ORACLE

Oracle® XML DB
Developer's Guide
11gRelease 2 (11.2)
E23094-04

February 2014

This manual describes Oracle XML DB. It includes guidelines
and examples for storing, generating, accessing, searching,
validating, transforming, evolving, and indexing XML data
in Oracle Database.



Oracle XML DB Developer's Guide, 11g Release 2 (11.2)

E23094-04

Copyright © 2002, 2014, Oracle and/or its affiliates. All rights reserved.
Primary Author: Drew Adams

Contributing Author: Nipun Agarwal, Abhay Agrawal, Omar Alonso, David Anniss, Sandeepan Banerjee,
Mark Bauer, Ravinder Booreddy, Stephen Buxton, Yuen Chan, Sivasankaran Chandrasekar, Vincent Chao,
Ravindranath Chennoju, Dan Chiba, Mark Drake, Fei Ge, Janis Greenberg, Wenyun He, Shelley Higgins,
Thuvan Hoang, Sam Idicula, Namit Jain, Neema Jalali, Deepti Kamal, Bhushan Khaladkar, Viswanathan
Krishnamurthy, Muralidhar Krishnaprasad, Geoff Lee, Wesley Lin, Annie Liu, Anand Manikutty, Jack
Melnick, Nicolas Montoya, Steve Muench, Chuck Murray, Ravi Murthy, Eric Paapanen, Syam Pannala, John
Russell, Eric Sedlar, Vipul Shah, Cathy Shea, Asha Tarachandani, Tarvinder Singh, Simon Slack, Muralidhar
Subramanian, Asha Tarachandani, Priya Vennapusa, James Warner

Contributor: Reema Al-Shaikh, Harish Akali, Vikas Arora, Deanna Bradshaw, Paul Brandenstein, Lisa
Eldridge, Craig Foch, Wei Hu, Reema Koo, Susan Kotsovolos, Sonia Kumar, Roza Leyderman, Zhen Hua
Liu, Diana Lorentz, Yasuhiro Matsuda, Valarie Moore, Bhagat Nainani, Visar Nimani, Sunitha Patel, Denis
Raphaely, Rebecca Reitmeyer, Ronen Wolf

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.









Contents

Preface ............. e xlii
ATIEIICE ...t xliii
Documentation AcCeSSIDILItY ........ccciiiiiiiiiiiiiiiicc s xliii
Related DOCUIMENES .......c.cueuiiiiiiiiiiciiciciieee et xliv
CONVENEIONS ....oviiiiiiiiii bbb sa et sae s xlv
Code EXAMPLES ......vviiiiiiiciicic s xlvi
Syntax DeSCIIPHONS. ..ot s xIvii

What's New in Oracle XML DB? ... xlix
Oracle Database 11g Release 2 (11.2.0.3) Deprecated Oracle XML DB Constructs .........c.ccccu...... xlix
Oracle Database 11g Release 2 (11.2.0.3) Other Changes in Oracle XML DB.............cccccooeiiie xlix
Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle XML DB...........cccccccccviinnnnn xlix
Oracle Database 11g Release 2 (11.2.0.2) Deprecated Oracle XML DB Constructs .........cccccceeueuenee. li
Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle XML DB..........cccccccccoininninninnnnn li
Oracle Database 11g Release 2 (11.2.0.1) Deprecated Oracle XML DB Constructs ..........ccccccoeueunenee lii
Oracle Database 11g Release 1 (11.1) New Features in Oracle XML DB.........cccccccccociiiiiciiennne. liii

Partl Oracle XML DB Basics

1 Introduction to Oracle XML DB

Overview of Oracle XIML DB ...ttt ettt s e e s sae e e steesse e e s e ssaessenseenes 1-1
Oracle XML DB ATCRItECLULE ..........ccvociiiieiieieceecteeeteeeete ettt ettt sb e be e e e s e e b e reenns 1-2
APIS £OI XIMIL ..ottt ettt ettt ettt ettt et e e te et eteeaeereebeetaebeebaenseessenseessenseesseseensenseeneas 1-4
Catalog Views Related t0 XML ........cccooiiiiiiiic e 1-6
Overview of Oracle XML DB RepOSItOry .......cccoocurueiiiiicieiiiicicieccee e 1-7
XIMIL SEIVICES ..uveeveieiieeiieeieeete et et e ettt eete e s vt e s st eesbe e baeesseessaesssaesseessseesaeassesssasassanssaassenssenseenns 1-7

Views RESOURCE_VIEW and PATH_VIEW. ...ttt 1-8

Oracle XML DB Repository Architecture.........c..cooooeieiiiriiiiiiiiececc e 1-8

FAlES ANd FOLAETS ....ocuvitieeietecieeteete ettt ettt ettt et et e ta e s aeentesbeesaesbeensesseessenseennenns 1-9

Oracle XML DB Protocol Archit@Cture .........ccecveveeieriieierieieeecieseeee e eae e 1-10
Programmatic Access to Oracle XML DB (Java, PL/SQL, and C) ........ccccecevvvvivninnnnnnne. 1-11
Oracle XIML DB FEAtUIES ..........ccocovieiiiiiiieieetecteeteeeie ettt et eete et eeteeaesteesaesseesesssesesssessesseeseessenseenes 1-12
XMLTyPpe Data TYPe ...ccueuiiiiiiiiiiiiiiiciii s 1-12
XMLType Tables and Columns Can Conform to an XML Schema............cccccccevunnnnnnn. 1-13
XIMLTYPE APL...ooiiiiiieierece ettt 1-13



XML Schema SUPPOTIt.......ooiiiiiiiiiiiiiic s 1-13

XMLType Storage Models ..o 1-14
XML/SQL DUALLY ..ot 1-19
SQL /XML Standard FUNCHONS .......ccviivieeieeeie ettt ettt e seeeveeeteseeveeesaeseveeevaeeaneenrs 1-20
Automatic Rewriting of XQuery and XPath EXpressions...........ccccoooioeieieioinciciiicicee, 1-20
How XPath Expressions Are Evaluated by Oracle XML DB........c.cccccccceiiiiinininnnne. 1-20
Rewriting SQL Code That Contains XQuery and XPath Expressions..............ccccceueuee. 1-21

When Can XPath Rewrite OCCUI?........cccocoviiiiiiiiiiiiiiiiiic s 1-21

What is the XPath-Rewrite Process? ... 1-21

Oracle XML DB Benefits..........ccccccoiiiiiiiiiiiiiiiicii s 1-22
Unifying Data and Content ..o 1-23
Exploiting Database Capabilities...........cccovuvriiiririririiiiiirreerreeee s 1-24
Exploiting XML Capabilities ..........cccccoviiiiiiiiiiiiiiiiiiiiiicccs 1-25
Efficient Storage and Retrieval of Complex XML Documents...........ccccccoevuviviinnininnnnnnnne 1-26
Use XMLType Views If Your Data Is Not XML ......ccccccceiiiiiiiiicceeceeeeeeeeeeeeeaes 1-27
Search XML Data using Oracle TexXt..........ccccooiieiiiiiiiiiiiiic e 1-27
Build Messaging Applications using Oracle Streams Advanced Queuing............ccccceueueunene. 1-27
Standards Supported by Oracle XML DB ...........ccccooiiiiiiiiiiiics 1-27
Oracle XML DB Technical SUPPOTt.........cccccoiiiiiiiiiiiiiiii s 1-29
Oracle XML DB Examples Used in This Manual.............cccccocoiiiiiiiiiiines 1-29
Further Oracle XML DB Case Studies and Demonstrations..............ccccccoceiiiiiiininiinnnnne. 1-29

2 Getting Started with Oracle XML DB

Oracle XML DB Installation..............cooooiiiiiiiiiicc s 2-1
Oracle XML DB USE CaSES ..........coimimiiiiiiiiiiiiititcictieiitii ettt 2-1
Application Design Considerations for Oracle XML DB.............c.ccccoovniiinnnnnnne, 2-2
Structure of YOUT Data.......coovviiiiiiiiiiiiiicc s 2-2
Oracle XML DB RepOSItOry ACCESS ......ccucueviiieieiiiiinicieiiicie ettt 2-3
Application LanGUAZE ........c.eveiieiueiiicieieieet et 2-3
PIOCESSING....coiiiviiiiiiiii s 2-4
MESSAZING ....cvcveveieiiteieieietettet bbb 2-5
STOTAEE .t 2-5
Oracle XML DB Performance.............cooveiiiriiieiciiieeicicicee et s 2-6
XML Storage ReqUirements............ccoocuiioiiiiiiiiiiicic e 2-7
XML Memory Management ... nensneas 2-7
Use of XOBs Reduces Memory Overhead for XML Schema-Based Documents............... 2-8

XOB Uses a Lazily-Loaded Virtual DOM...........cccoooiriiiiiiiiiiiccn e 2-8

XML Parsing OptimizZations .........cccccoiueuiiiiniiiiiiicc s 2-8
Node-Searching OptimiZations........c.cccceueuiuiuiiiiciiiiciiceeieeeeeeie e 2-8
XML Schema OptimizZations.........ccoviiviuiiiiiiiiiiicii e 2-8
Load Balancing Through Cached XML Schema...........ccccooeiniiininiiniiccccecee 2-9
Reduced Bottlenecks From Code That Is Not Native .......ccccooiviiiiiiiniiiiicccnes 2-9
Reduced Java Type Conversion Bottlenecks............cccourieiiiiiiiieiiiiciceccic 2-9

3 Using Oracle XML DB

Storing XML Data as XIMLTYPE ... 3-1
WHhat i8S XIMLTYPE?.....ouiiiiiiiiiii s 3-2

vi



Benefits of XMLType Data Type and API.........cccooooiiiiiiiiii e, 3-2

Creating XMLType Tables and Colummns...............ccccociiiiiiiiiiiiis 3-3
Partitioning or Constraining Binary XML Data using Virtual Columns ..............ccccoeeiinne. 3-3
Loading XML Content into Oracle XML DB...........cccccccooiiiiiiiiiies 3-5
Loading XML Content using SQL or PL/SQL........ccccooiiiiiiiiiiece e 3-5
Loading XML Content Using Java ........cccccciviriiiiiiiniiiiiiiii s 3-6
Loading XML Content using C .........ccooouoiiiieiiiicicie it 3-7
Loading Large XML Files that Contain Small XML Documents ............cccccooemieeiiinieinincnnnnnn. 3-9
Loading Large XML Files using SQL*LOader ........c.ccccceueuiiiiiiiiiiiiiiiieeecicieieeieeeeeeeeeeeieeeenas 3-9
Loading XML Documents into the Repository using DBMS_XDB .........cccccocoooiiiiiinnnan, 3-10
Loading Documents into the Repository using Protocols ...........c.cccooeeueieiiicieiiiciciecnen, 3-10
Character Sets of XML DOCUMENES ...........ooimimiiiiiiiiicccccccecc e 3-11
XML Encoding Declaration ..ot 3-11
Character-Set Determination When Loading XML Documents into the Database............... 3-11
Character-Set Determination When Retrieving XML Documents from the Database......... 3-12
Overview of the W3C XML Schema Recommendation..............c.cocooerriiiiiiiiiiiiiiienn, 3-13
XML Instance DOCUMENTES .........c.cooiiiiiiiiiiiicccc s 3-13
XML Schema for SChemas...........ccovviiiiiiiiiiicii e 3-14
Editing XML SCheMAS ......c.cueviiiiiieiiiieci e 3-14
XML Schema Features ..........ccccccvviiiiiiiiiiniiiiiiic s 3-14
Text Representation of the Purchase Order XML Schema........cccccccocciciiiicciicnccnnne. 3-14
Graphical Representation of the Purchase-Order XML Schema...........cccccovvviiiinniniiinnns 3-17

Using XML Schema with Oracle XML DB ..........ccccccooiiiiiiiiiies 3-18
Why Use XML Schema with Oracle XML DB?........ccccccooiiiiiiiiceeeceeeeeeneeneees 3-18
Validating Instance Documents with XML Schema ..o 3-18
Constraining Instance Documents for Business Rules or Format Compliance............... 3-18
Defining How XMLType Contents Must be Stored in the Database.............cccccccueueennee. 3-18
Structured Storage of XML DOCUMENES .........cocueiriiiiiiiiicicici s 3-18
Annotating an XML Schema to Control Naming, Mapping, and Storage ...........ccc.cceeueuee... 3-19
Controlling How Collections Are Stored for Object-Relational XMLType Storage.............. 3-19
Declaring the Oracle XML DB NameSPaCe .........cccocevveveriiiiiieiiiiiiiiiicciccceeeeeeens 3-20
Registering an XML Schema with Oracle XML DB .........ccccoooiiiicccce, 3-24
SQL Types and Tables Created During XML Schema Registration............cccccccceueueuenneee. 3-25
Working with Large XML SChemas ...........cccoiriiioiiiiiiciiiccci s 3-26
Working with Global Elements............cccoooiiiiiiiiiiiiiiiiccccccceees 3-27
Creating XML Schema-Based XMLType Columns and Tables.........c.cccccccoeeuecicciciinnnnnnnne. 3-28
Default TabIes ........cviiiiiiiiiiii s 3-29
Identifying XML Schema Instance Documents ... 3-30
Attributes noNamespaceSchemalLocation and schemaLocation ...........cccccccccccccccncccnnee. 3-30
Dealing with Multiple NameSpaces ...........cccccoviviiiiiiiiiiiiii s 3-31
Enforcing XML Data Integrity using the Database ...............cccccccoiiiiiiiiiiicas 3-31
Comparing Partial to Full XML Schema Validation ..........c.cccoceevrvvninnnnncirrecceeeene 3-32
Partial Validation ... 3-32

FUll Validation ....ccoueueueuiiiriiieiiineieciie ettt 3-33

Full XML Schema Validation Costs Processing Time and Memory Usage ............. 3-33

Enforcing Referential Integrity using SQL Constraints...........ccccooiiriiiiiicieniicccce 3-34
DML Operations on XML Content using Oracle XML DB ............c.ccccooviiinnnnnnnnniine 3-37

vii



viii

XPath and Oracle XIML.......oooeiiiiiiieeee et e et s et e serae e e sae s e saeessaaessnaaeseenseeennnees 3-38

Querying XML Content Stored in Oracle XML DB............cccocoooiiiiiiiiiiicce 3-38
PurchaseOrder XML DOCUMENL ..ot 3-38
Retrieving the Content of an XML Document using Pseudocolumn OBJECT_VALUE ...... 3-39
Accessing Fragments or Nodes of an XML Document using XMLQUERY .........c.c.c....c........ 3-40
Accessing Text Nodes and Attribute Values using XMLCAST and XMLQUERY................ 3-41
Searching an XML Document using XMLEXISTS, XMLCast, and XMLQuery..................... 3-42
Performing SQL Operations on XMLType Fragments using XMLTABLE ............................ 3-46

Accessing XML Data in Oracle XML DB using Relational Views............ccccoeiiiniiinnnn. 3-48
Breaking Up a Single Level of XML Data........c.cccooiiiiiiiiiiiiecc 3-49
Breaking Up Multiple Levels of XML Data.........ccccooiuiiiiiiiiiiiccc 3-49
Querying XML Content As Relational Data ........ccccccoveviiiiriniiirnccrecceeeeeeeeeees 3-51

Updating XML Content Stored in Oracle XML DB.............cccccceoiiiiiiiiiiiiic 3-52
Updating XML Schema-Based and Non-Schema-Based XML Documents............c.cccceueuee. 3-57

Namespace Support in Oracle XML DB .........ccocoiiiiiiiiicececereeeeeeeeeee s 3-57

How Oracle XML DB Processes XMLType Methods and SQL Functions ..............ccccccevevnnnnn. 3-58

Generating XML Data from Relational Data..............ccocoooiiiiiiiccas 3-59
Generating XML Data from Relational Data using SQL/XML Functions ..........cccccccceueueeee. 3-59
Generating XML Data from Relational Data using DBURITYPE ............cccooooviiiiiinnnan, 3-63

XSL Transformation and Oracle XML DB ..o 3-64

Using Oracle XML DB RepoSitory .........ccccoooiiiniiiiiiiiiiiiiiiiiciicc s 3-68
Installing and Uninstalling Oracle XML DB Repository ........cccoeoiicieiiiinicieiiicciccen, 3-68
Oracle XML DB Provides Name-Level LOCKING .........c.cooieiiiiiiiiiiicc 3-69
Use Protocols or SQL to Access and Process Repository Content............cccceovecccuiiccnnee 3-69
Storing and Retrieving Database Content using Standard Protocols..............cccccceeuiviiiiennee. 3-70
Uploading Content to Oracle XML DB using FTP .........cccccoouiiiiiiiiiccce 3-70
Accessing Oracle XML DB Repository Programmatically...........cccccoceeciceciiicicccenenee 3-72
Accessing and Updating XML Content in the Repository........cocceevirieieiiiiciiiiiicicen, 3-73

Accessing XML Documents using SQL ... 3-73
Repository Content is Exposed Through RESOURCE_VIEW and PATH_VIEW.......... 3-73
Use EXISTS_PATH and UNDER_PATH for Path-Based Predicates in a WHERE Clause.......
3-73
You Can Also Store Non-XML Documents in the Repository ...........cccceeveeiiiricinnnnes 3-74
PL/SQL Packages to Create, Delete, Rename, Move,... Folders and Documents........... 3-74
Accessing the Content of Documents using SQL..........cccoovuiirinirininininiice s 3-74
Accessing the Content of XML Schema-Based Documents.............cccccccciiiiniiiiininnicinnnne, 3-76
Accessing Resource Content using Element XMLRef in JoOins .......ccccccceueeiecceiciccennen. 3-76
Updating the Content of Documents Stored in the Repository ..........ccccccviivviiiviiiinnnn, 3-77
Updating Repository Content using Protocols.........cc.ccoueeiiiiiciiininiiiciiiceceee 3-77
Updating Repository Content using SQL ..o 3-78
Updating XML Schema-Based Documents in the Repository...........cccceveevieiiiiiiennnn 3-80
Controlling Access to Repository Data..........cccuiiiiiiiiiiiiiiiiicciccceccccceeees 3-80
Oracle XML DB Transactional Semantics ..o, 3-81
Querying Metadata and the Folder Hierarchy ... 3-81
RESOURCE_VIEW and PATH_VIEW......cccccccciiiiiiiiiiiiccccceees 3-81
Querying Resources in RESOURCE_VIEW and PATH_VIEW ... 3-82
Oracle XML DB Hierarchical Repository INdeX ..........cccooeeieiiiiiciiiiiccce, 3-86
How Documents are Stored in the Repository .........ccooueeeiiiieiiiniiiceeccc, 3-87



Viewing Relational Data as XML From a Browser ..............ccccccoovviniiniiinic 3-87

Accessing a Table or View from a Browser using DBUri SERVLET ..........cccccooooiiinnn. 3-87

XSL Transformation using DBUTri Servlet..............cccooiiiiiniiiiiiie 3-88
Part Il Storing and Retrieving XML Data in Oracle XML DB

4 XMLType Operations

Selecting and Querying XML Data...........cccoviiiiiiiiiiiiies 4-1
Searching XML Documents using XPath EXpressions ............cccceviiieioiiiiciiccicee 4-1
Querying XMLType Data using SQL/XML Functions XMLExists and XMLCast .................. 4-2

XMLEXISTS SQL /XML FUNCHON.....cviitieitieieeieeteeteete ettt et eere e eeve e eeveereeveereenseereeseeseenns 4-3
XMLCAST SQL/XML FUNCHON «...cocviiiiviiiiiiteci e 4-4
Examples of Querying XML Data using SQL/XML Functions ............ccccoeeueierneiniiicieieincnnnen, 4-6

Updating XML Data.........ccocooiiiiiiiiiiiii s 4-10
Updating an Entire XML DOCUmMEeNt ........c.coooiiiiiiiiiiii 4-11
SQL Functions that Update XML Data ..........cccccoeuiiiioimiiioiiic e, 4-12

Inserting XML Elements using SQL FUNCHONS ........ccccceuiuiuiiiiiiiiiiiiicceccccceeeeeneees 4-13
UPDATEXML SQL FUNCHON......cooiieiiiiciicici s s 4-14
UPDATEXML and NULL ValUes..........cccooeriiniiiniiniiesieccseese e 4-18
Updating the Same XML Node More Than Once...........cccccccceceeiciceececcceeeeeenes 4-20
Preserving DOM Fidelity When using UPDATEXML.........ccccooiiiiniiniiiiineeeins 4-20
When DOM Fidelity is Preserved ... 4-20

When DOM Fidelity is Not Preserved..........cccooiiiiiiiiiiieceeececneeneees 4-20
Determining Whether DOM Fidelity is Preserved ... 4-20
Optimization of Oracle SQL Functions that Modify XML Data ........ccccccoooiriiiiiiiiiinne, 4-20
Creating XML Views using Oracle SQL Functions that Modify XML Data.........c.cccccceuuuee. 4-22
INSERTCHILDXML SQL FUNCHOMN ......oueiiiiiiicici s 4-23
INSERTCHILDXMLBEFORE SQL FUNCHON........coviiriiiiciicicicc s 4-25
INSERTCHILDXMLAFTER SQL FUNCHON ....cuvviiiiiiiiiiiicecc e 4-26
INSERTXMLBEFORE SQL FUNCHON........ouriiiiiiiciiiicicce e s 4-27
INSERTXMLAFTER SQL FUNCHON .....ooviiiiiiiciicici s 4-29
APPENDCHILDXML SQL FUNCHOMN......c.oviuiiiiiiiiiiiiiicnciecnes e 4-30
DELETEXML SQL FUNCHON ..ottt s 4-31

5 Using XQuery with Oracle XML DB

Overview of XQuery in Oracle XML DB ... 5-1
Overview of the XQuery Language ...........ccccccccciiiiiiiiiiieeeee e 5-2
Functional Language Based 0n SEqUENCES..........cccccuiuiimiiiiiiiiiiiiiiiccieeeereeieeeeeeeeeeeneeeeeeenes 5-2
XQUETY EXPIESSIONS.....oiviviviiiiiiiiiciciciciictec s 5-3
FLWOR EXPIESSIONS .....vcviuiiiiiieiiiicicicetcn st 5-4
SQL/XML Functions XMLQUERY and XMLTABLE ...........cccccoooeiniiieccnes 5-5
XMLQUERY SQL /XML Function in Oracle XML DB ........ccocioiiiiiiiiiiiececeecee e 5-6
XMLTABLE SQL /XML Function in Oracle XML DB.......cccooiioiiiieieeeeeeeeeeeeeeee e 5-7
When To Use XQUETY ......ccoiuiiiiiiiiiiiiiiiii s 5-9
Predefined Namespaces and Prefixes ... 5-9
URI Scheme oradb: Querying Table or View Data with XQuery ............ccccccoovvinnnnnnnnnn 5-10



Oracle XQuery Extension FUNCHONS ... 5-11

ora:contains XQuery FUNCHON ... 5-11
ora:matches XQuery FUNCHON........ccccoiiiiiiiiiiccccececeeee e 5-12
ora:replace XQuery FUNCHON .......ooiiiiiii 5-12
ora:sqrt XQuery FUNCHON ..o 5-13
ora:tokenize XQUeTry FUNCHON ........cccoiiiiiiiiiiiiicccccccce s 5-13
Oracle XQuery Extension-Expression Pragmas..............cccoooviiiiiiiiiiiiiiiicceeeeennes 5-13
XMLQUERY and XMLTABLE EXamples ...........ccccccoviiiiiiininiiiiiiiiinncsessnes 5-15
XQuery Is AbOut SEQUENCES .........ccovviiiiiiiiiiiiii s 5-16
Querying XML Data in Oracle XML DB Repository using XQuUery..........ccccceueuiriereininnnnnn. 5-16
Querying Table or View Data using XQUeTry .........ccccooueiiiiiiiiiiiiicecccc e 5-18
Using XQuery with XMLType Data........cccoooiiiiiiiiiicicceeeeeeneeeeeeneee s 5-23
Using Namespaces with XQUETY ........cooiuiiiiiiiiiiiii e 5-27
Performance Tuning for XQUEeTY ... 5-29
Rule-Based and Cost-Based XQuery Optimization ..........ccccccceeeereiiinnnnnnreenreeccenes 5-31
XQuery Optimization over Relational Data...........ccccooiiiiiiiiiiiiii, 5-31
XQuery Optimization over XML Schema-Based XMLType Data .......c.cccccoooreieiiiinieininnnnn. 5-32
Diagnosing XQuery Optimization: XMLOptimizationCheck...........cccccccoevvvinnnnnnnnnnne. 5-35
Improving Performance for fn:doc and fn:collection on Repository Data ........c..ccoevuercnenes 5-36
Using equals_path and under_path Instead of fn:doc and fn:collection............c.c.co.c... 5-36

Using Oracle XQuery Pragma ora:defaultTable...........ccccccccceiiniiiiiniicncicrene 5-36
XQuery Static Type-Checking in Oracle XML DB...........ccccccoooviiiiiiiiniiii 5-37
SQL*Plus XQUERY COMMANG.....ccoociiiiiiiiiiiiiiereeieietete ettt sttt et e e s sbesbeeaens 5-38
Using XQuery with PL/SQL, JDBC, and ODP.NET ...........ccccocooiiniiiiiiicnes 5-39
Oracle XML DB Support for XQUETY ........ccccccviiiiiiniiiiiiiciiieieci s 5-42
Support for XQuery and SQL..........ccoiiii 5-42
Implementation Choices Specified in the XQuery Standard............cccccovrvvinnnnncnnes 5-42
XQuery Features Not Supported by Oracle XML DB ........c.cccoooiiiiiii 5-43
XQuery Optional FEatures...........coocueiiiiiiiiiiiic s 5-43
Support for XQuery Functions and Operators ............cccccceeceiciinninicnrnecrreeeeseeeeenes 5-43
XQuery Functions fn:doc, fn:collection, and fn:doc-available .........ccccccccevivinniniinnnns 5-43

Indexing XMLType Data

Oracle XML DB Tasks Involving IndexXes ... 6-1
Overview of Indexing XMLType Data ...........ccoccccoiiniiiiiininiiiiincciceceereeeee e 6-3
XMLIndex Addresses the Fine-Grained Structure of XML Data.......cccccoeevecvveinecnenenenene 6-4
OTaCle TEXE INAEXES ...ttt ettt ettt ettt e st et e e et ebeebesbesaeas 6-4
Optimization Chooses the Right Indexes to Use............cccooovviiiniiiiiiieiicccece 6-5
Deprecated Indexes for XML Data ........cccccccueuiiiiiiiiiiiiiiicceceeeeeeereeeeeeeeeeeee e 6-5
Function-Based INAEXES .......cc.eoeriiriiiiieieieie ettt st 6-5
CTXXPAth INAEXES ..ttt ettt et et e e sse st e s e seseensenseneesensens 6-5
Indexing XMLType Data Stored Object-Relationally ..............ccccccooovinniiniiii, 6-6
Indexing Non-Repeating text() Nodes or Attribute Values.........cccocoeiiiiiiiiiiniiiins 6-6
Indexing Repeating (Collection) Elements...........cccccoiiiiiiiiiiiiiiiiiiiiicccccceeeeeeees 6-7
XIMILINA@X ...ttt ettt ettt ettt ettt ettt et et et et s bt s bt e bt b e sa e st et e nb et ententemtenteseenesaensesen 6-7
Advantages of XMLINAEX........ccccceiiiiiiiiiiiiiiiiiicc s 6-8

Structured and Unstructured XMLIndex Components.............ccccvvervnnninnnnnininnncncncncnenenn. 6-9



XMLIndex Structured COMPONENt..........ccovviviiiiiiiiiiiiiiiicicce s 6-10

Ignore the Index Content Tables; They Are Transparent ..........c.cccooceeieiiineiiiiincieinaes 6-11
Data Type Considerations for XMLIndex Structured Component ...........c.ccccceuvueucunnene. 6-11
XMLIndex Unstructured COmMpPONeNt..........ccooeiviiiiiiiiieiiiiicieiciceeeeeeeeeens 6-13
Ignore the Path Table — It Is Transparent .............cccooceiiieieiiiciccc 6-15
Column VALUE of an XMLIndex Path Table ..........cccccooviiiniiininiiiiins 6-16
Secondary Indexes on Column VALUE .........ccocoooiiiiii 6-17
XPath Expressions that Are Not Indexed by an XMLIndex Unstructured Component 6-17
Creating, Dropping, Altering, and Examining an XMLIndex Index........ccccccccevuvuvvnnnnnnne. 6-18
Using XMLIndex with an Unstructured Component.............cccocuoviiriiiniicieninncccc 6-19
Creating Additional Secondary Indexes on an XMLIndex Path Table..............ccccc........ 6-20
Using XMLIndex with a Structured Component .............ccccciiiiciiiiicciiccceeeenenenens 6-23
How to Tell Whether XMLIndex is Used ........c.ccooeiiiiiiiiiiiiiiiiiiiiiiciceeceees 6-25
Turning Off Use of XIMLINAEX .......c.ovoiimiiiiiiieiecc s 6-30
XMLIndex Path Subsetting: Specifying the Paths You Want to Index.........ccccccocvurvvrnnenne. 6-30
Examples of XMLIndex Path Subsetting .............ccoooeieiiiiiiiiiii 6-31
XMLIndex Path-Subsetting Rules..............oooiiiiiiiii 6-32
Guidelines for Using XMLIndex with an Unstructured Component ............cccccceuevvuvuvurenunne. 6-32
Guidelines for Using XMLIndex with a Structured Component.............cccccevvvvviviiiinnnnnnne. 6-34
XMLIndex Partitioning and Parallelism .............cccooooiiiii 6-34
Asynchronous (Deferred) Maintenance of XMLIndex Indexes ..........ccccccevuvuvivrvennnnnnccnes 6-35
Collecting Statistics on XMLIndex Objects for the Cost-Based Optimizer............cccccevunenne. 6-37
Data Dictionary Static Public Views Related to XMLINdeX..........ccccceuvvvininninninnniinnne, 6-37
PARAMETERS Clause for CREATE INDEX and ALTER INDEX.........cccccoooviiniiiininiinnnnn. 6-38
Using a Registered PARAMETERS Clause for XMLINdeX..........ccccoouoeininiiiniiiciiiniiennnns 6-39
PARAMETERS Clause Syntax for CREATE INDEX and ALTER INDEX..........cccccc...... 6-39
Usage of XMLIndex_parameters_clatse ... 6-44
Usage of XMLINdex_parameters ...........cocoevviiiiniiiiininiiiiiisesscscnsnnnes 6-44
Usage of PATHS Clause..........c.ooiiiiiiiciieicei et s 6-44
Usage of create_index_paths_clause and alter_index_paths_clause...........cccccccccueucuunene. 6-44
Usage of pikey_clause, path_id_clause, and order_key_clause...........ccccccevevevirirnrinnnnnn. 6-45
Usage of Valtie_ClatSe .........ccciiiiiiiiiiiiicici e 6-45
Usage Of @SYNC_CLAUSE ......c.cucuimiuiiiiiiiiiicicccce ettt eees 6-45
Usage of groups_clause and alter_index_group_clause..........ccccccocvuivviiiininininninnnns 6-45
Usage of XMLIndex_xmltable_clause.............cccouiiuiiiiiiiiiiiiiiiicecceeeeeees 6-45
Usage of COIUMN_CLAUSE. ........c.ouiuiiimiiiiiiiieicccccce e 6-46
Oracle Text Indexes on XML Data............ccocooiiiiiiiiiiiiiiiic e 6-46
Creating and Using Oracle Text IndeXes............cccccoveiiiiiiiininininininiiiiinnncnnsnees 6-46
Oracle Text Indexes Are Used Independently of Other Indexes ...........ccccevuvevirvevnnnnccnne. 6-47

XML Schema Storage and Query: Basic

Overview of XML Schema and Oracle XML DB.........cccoooeiirieiinieeeeeeeee et 7-2
Using Oracle XML DB with XML Schema ..........cccccooiiiiiiiiiiis 7-5
WHhy XML SChemar? ..o 7-5
DTD Support in Oracle XML DB ........cccoooiiiiiiiiiiiiiiicsse s 7-6
ININE DTD DEfINItIONS ....vecvveiieeieiieeieiieterie et ese ettt este e e esseeseessesreessesssessesssessesseessensesnes 7-6
External DTD Definitions .....c..ccveeuieieeiieieiieieeeteeeecie et et et et e ere e eeaesreesse s esbesreeseeseensesseenns 7-6

xi



Managing XML Schemas with DBMS_XMLSCHEMA ..............ccccccooninnniniiinn, 7-6

Registering an XML Schema with Oracle XML DB .........ccccooiii 7-7
Delete and Reload Documents Before Registering Their XML Schema ..........cccccococccececnnnes 7-8
Storage and Access INfrastriCture ...........c.ooiiveiiiiiiii 7-8
Atomic Nature of XML Schema Registration ............coceooiiiiiie, 7-8
Managing and Storing XML SChemas...........ccccovvvivirrrrnniincrcrrrcees e 7-9
Debugging XML Schema Registration for XML Data Stored Object-Relationally ................... 7-9
SQL Object Types Created During XML Schema Registration, for Structured Storage.......... 7-9
Default Tables Created During XML Schema Registration ...........cccccoceevvvvinnnnnnnnenenes 7-10

Do Not Use Internal Constructs Generated during XML Schema Registration..................... 7-10
Generated Names are Case SenSitive ..........cooeucueiiiciciiiiccieccee e 7-11
Database Objects That Depend on Registered XML Schemas.........c.ccccccccueurueiciicicnnncnnnenne. 7-11
Listing All Registered XML Schemas...........ccccocueiiiiiiiiiicicic s 7-11
Deleting an XML SChema...........coocuiiiiiiiii e 7-12
DBMS_XMLSCHEMA.DELETESCHEMA OpPtions ......ccoovvviimiiinininicnniieeeiscnenennns 7-13
XMLType Methods Related to XML Schema...........cccoociiiiiiiininiiiiicces 7-14
Local and Global XML Schemas ............ccccooiuiiiiiiiiiiiiiiiiiccice e 7-14
Local XML SCHema. ..o 7-14
Global XML SChema ........cooviiiiiiiiiiiiccc s 7-15
DOM FIAELItY ...t 7-16
What is DOM FIAElIty?......ccoiiiiiiiiiiiiiccceeecee et 7-16
SYS_XDBPD$ and DOM Fidelity for Structured Storage ..........cccccovvivivniiniiiiniinininn, 7-16
XML Translations ..o s 7-17
Changing an XML Schema and XML Instance Documents for Translation ............cc.cc........ 7-17
Indicating Translatable Elements in an XML Schema..........cccoooeiiiiiiiiiiiiii 7-17
Indicating Translation Language Attributes in an XML Instance Document................. 7-18
Making XML Documents Translatable.............ccccooiiiiiiiiiiceeeeeeeeeeeneenenens 7-18
Operations on Translated DOCUMENLS ..........ccccueviiiiiiiiiiiiiiiiiiic s 7-24
Creating XMLType Tables and Columns Based on XML Schemas ...........cc.cccccccovniiiinniccnne. 7-27
Specifying XMLType Storage Options for XML Schema-Based Data.........c.ccccccoeuruverrunnnnnne. 7-29
Binary XML Storage of XML Schema-Based Data .........c.ccccoveiirininiiiniiiciicic 7-30
Unstructured Storage of XML Schema-Based Data..........cccccccoeiiiiiiiniiiiiiiicicnn, 7-32
Structured Storage of XML Schema-Based Data.........cccccoeeueivniiinnininrrccreene 7-32
Specifying Relational Constraints on XMLType Tables and Columns............cccccooovvrurrnnnnes 7-34
Oracle XML Schema ANNotations...........coccccieiviiiiiiiniiiiciiniccceeieecreetee et 7-34
Common Uses of XML Schema ANnotations..........c.eceeiiiiieiniiceeeecnne, 7-34
XML Schema Annotation EXample ..o 7-35
Available Oracle XML DB XML Schema ANNotations ............ccccecevvvinininnnnninnnnnisneenes 7-39
XML Schema Annotation Guidelines for Structured Storage .........c.cccccceeveiicrvnncnnenes 7-41
Avoid Creation of Unnecessary Tables for Unused Top-Level Elements....................... 7-42
Provide Your Own Names for Default Tables...........ccccccoeviiiiiiniiiiiiiiicincccne 7-42

Turn Off DOM Fidelity If Not Needed..........ccocovuviiiirnniiiiircirreceereceeeee s 7-42

Use Unordered Collection Elements When Order Doesn't Matter ............ccccooieinnae. 7-42
Annotate Time-Related Elements with a Timestamp Data Type ..........ccccooeuevvirrirnincnnnes 7-42

Add Table and Column Properties ..........ccccoccciiiiiiiieicccceeeeeeeeeeeeeeeeeeeeeeenes 7-42

Store Large Collections Out of Line ........c.cooieiiiiiiiiiii i 7-43
Querying a Registered XML Schema to Obtain Annotations ...............ccccccceoeiiiiiiiiiinn, 7-43

Xii



Mapping XML Schema Data Types to Oracle XML DB Storage.............ccccccceeviiiinininiininininnnn. 7-44

Mapping XML Schema Data Types to SQL Data Types..........ccccccevvvvniinnnniniiiiiinn 7-45
Example of Mapping XML Schema Data Types to SQL.......ccccccoeuiirriiiinniircreeceeee 7-45
Mapping XML Schema Attribute Data Types to SQL ...........cccccovviiiiiiiiiini 7-47

Overriding the SQLType Value in an XML Schema When Declaring Attributes.......... 7-47
Mapping XML Schema Element Data Types to SQL........ccccccceeiiiiiiiiieeeiccceeeeeees 7-47
Overriding the SQLType Value in an XML Schema when Declaring Elements............. 7-48
Mapping simpleType to SQL .......oooviiiiii e 7-48
NCHAR, NVARCHAR, and NCLOB SQLType Values are Not Supported .................. 7-51
simpleType: Mapping XML Strings to SOL VARCHAR2 Versus CLOB........................ 7-51
Working with Time ZOones..........cccouiiiriiiiiiiiic s 7-51
Using Trailing Z to Indicate UTC Time Zone.........ccccoeeiuiicmicieeeeceeeeeceeeeenes 7-52
Mapping complexType to SQL .......cccccoiiiiiiiiiiiiiicc 7-52
Specifying Attributes in a complexType XML Schema Declaration ............ccccccvuvurvnnnne. 7-52

XPath Rewrite for Structured Storage

Overview of XPath Rewrite for Structured Storage ..o, 8-1
Sample of XPath Expressions that Are ReWritten............ccocccoiiiniiiinninniniiceeeeeeeeee 8-2
Analyzing and Optimizing XPath Queries using Execution Plans................ccccocoonnninnnnnn. 8-3
Guideline: Look for underlying tables versus XML functions in execution plans................... 8-3
Guideline: Name the default tables, so you recognize them in execution plans...................... 8-4
Guideline: Create an index on a column targeted by a predicate..........c.cccoeviiiiiiiiiiinns 8-4
Guideline: Create indexes on ordered collection tables ............c.coooriiiiiii 8-6
Guideline: Use XMLOptimizationCheck to determine why a query is not rewritten............. 8-7

XML Schema Storage and Query: Advanced

Generating XML Schemas with DBMS_XMLSCHEMA.GENERATESCHEMA ........................ 9-1
Adding Unique Constraints to the Parent Element of an Attribute...................cccoooon, 9-3
Setting Annotation Attribute SQLInline to false for Out-Of-Line Storage ..............cccccceuennnne. 9-4
XPath Rewrite for Out-Of-Line Tables..........ccccooviiiiiiiiiiiiiiiic e, 9-7
Storing Collections in Out-Of-Line Tables .............ccccccooniiiiiiiiiiie 9-8
Partitioning XMLType Tables and Columns Stored Object-Relationally...............cccccccceneees 9-10
Examples of Partitioning XMLTYpe Data ........ccccccecuiieiiiiiiiiiiceeeeeeeieeieieneeeeeeeeeeeneees 9-11
Partition MaintenancCe ............coeciiiiiiiiiiiecc s 9-12
Fully Qualified XML Schema URLS...........cccccccoviiinininiiiiiiiiinrsssse s 9-13
Mapping XML Fragments to Large Objects (LOBS) ..........cccccceviiiiiiininiiiice 9-14
complexType Extensions and Restrictions in Oracle XML DB ..., 9-15
complexType Declarations in XML Schema: Handling Inheritance ...........cccccocoooveeininnnnn. 9-15
Mapping complexType: simpleContent to Object TYPes.......ccccceeeucueucicceiecieciceeeieeeene 9-17
Mapping complexType: any and anyAttribute ... 9-18
XML Schema: Working with Circular and Cyclical Dependencies...........c.ccocoecivinineiccnnnnnee 9-18
For Circular XML Schema Dependencies Set Parameter GENTABLES to TRUE ................. 9-19
complexType Declarations XML Schema: Handling Cycles ............ccocooiiiiriiniiiiciciine, 9-19
How a complexType Can Reference Itself .............cccccoooiiiiiiniiiiicc 9-21
Cyclical References Among XML SChemas...........cccccccueueiiiiiniiiniiiiiineereeeeeseeeees s 9-22
Support for Recursive Schemas.............cociiiiiiiiiiiii s 9-24

xiii



Sharing defaultTable Among Common Out-Of-Line Elements...........c.cccooooiiiiiiiiiniinnnn, 9-25

Query Rewrite when DOCID is Present ...........cooooiiiiiiiiiiiiicc e 9-27
Disabling DOCID Column Creation ...........ccccccueueueuiueuemeueieuemiieieieieieeeneieierenenesesesesesesenesenesenenens 9-28
Loading and Retrieving Large Documents with Collections ..............ccccocoeiiiiiiiniiiinnns 9-28
Guidelines for Setting xdbcore Parameters............ccoceueuoiiiiiiiiicicieccc e 9-29

10 XML Schema Evolution

Overview of XML Schema EVOIUtion.............cocooooiiiiiiiiiiica 10-1
Using Copy-Based Schema Evolution.............ccocooiiiiiiiiiii 10-2
Scenario for Copy-Based EVOIUtiON.........cooiiiiiiiici 10-2
copyEvolve Parameters and Errors ..o 10-5
Limitations of Procedure COPYEVOLVE ..........cccccooiiiiniiiiccna, 10-7
Guidelines for Using Procedure COPYEVOLVE .........ccocoioiiiiiiiicc e, 10-8
Top-Level Element Name Changes.............cccocueiiiiiiiiiiiciccee s 10-8
User-Created Virtual Columns of Tables Other Than Default Tables..............ccccococo..... 10-8

Ensure that the XML Schema and Dependents Are Not Used by Concurrent Sessions 10-8
Rollback When Procedure DBMS_XMLSCHEMA.COPYEVOLVE Raises an Error ..... 10-9

Failed Rollback From Insufficient Privileges...........cccccccoeeiiiiiniicniniirrrcrrcecenes 10-9
Privileges Needed for XML Schema EvOlution............cooeveiiiiiiiiiic 10-9
Updating Existing XML Instance Documents using a Style Sheet ...........c.c.ccooiiinn. 10-10
Examples of Using Procedure COPYEVOLVE.........ccccccceiiiiiiiiiiicrcceeeeeeeeeeeas 10-12
Using In-Place XML Schema EVOIUtion............cccoooviiiiiiiiiicccna 10-15
Restrictions for In-Place XML Schema Evolution............cccccccvivviiiiiniiiin 10-15
Backward-Compatibility ReStriCtions..........ccoceviiiiiiiiiiicccccccccccccccceeenenes 10-15
Changes in Data Layout on DisK.........cccoouoiiiiii 10-16

Reordering of XML Schema Constructs .........ccccuevoiicieioiiiciciecccecc 10-16

Changes from a Collection to a Non-Collection..........c.cccoeeueueuriervninnnnnnrneenes 10-16

Model Changes within a complexType Element ...........ccccooiiiiiiiiiiiiiicne 10-16

Other Restrictions on In-Place EVOIUtION ........ccccoviiiiiiiiiiiicas 10-17
Changes to Attributes in Namespace Xdb..........ccccoevvirnnnninnnnnciiiccccccnes 10-17

Changes from a Non-Collection to a Collection..........cccccouieviiiiniiniiiiiiiniinn, 10-17

Supported Operations for In-Place XML Schema Evolution..........c.ccccooviiiiiiiiiiiinnnes 10-17
Guidelines for Using In-Place XML Schema Evolution.............cccccciiiiiiiciinccccccenee 10-19
inPlaceEvolve Parameters............ccooveiiiiiiiiiiiiiiiii 10-19
Creating the Document for the diff XML Parameter .............cccooeveiviiininiinnniiceeece, 10-20
diffXML Operations and EXamples.........ccccoveriiiiiiiiiiiccccccecececeeenenenes 10-21

11 Transforming and Validating XMLType Data

Transforming XMLType INStances ... 11-1

SQL Function XMLTRANSFORM and XMLType Method TRANSFORMY() .........cccccevevevnnee 11-2
XMLTRANSFORM and XMLType.transform(): Examples ..............ccccccoevvnnnnnnnnnnnnnnn 11-2
Validating XMLType INStANCES ..........cccoiiiiiiiiiiiiiii s 11-7
Validating XML Data Stored as XMLType: Examples............cccccocovniiiiiniiniiieis 11-8

12 Full-Text Search Over XML Data
Overview of Full-Text Search for XIML ...t 12-1

Xiv



Comparison of Full-Text Search and Other Search Types.........ccccccovvvvinininnnininnn 12-1

Searching XML Data ..o 12-2
Searching Documents using Full-Text Search and XML Structure ..........cccccceeveuvuvrvrernnnnnne. 12-2
About the Full-Text Search EXamples...........cccoeveirieinirinieineinieinieincineeseeseeeeeeseseseseseseesesnenes 12-2
Roles and PrivileZes.........cccocueiiiiirieiiiiciei ettt 12-2
Schema and Data for Full-Text Search Examples..........ccccccovuviiirnrnninnnnnnnncnceecne 12-2
Overview of CONTAINS and ora:contains.............cccoceiiniiiiiiniiiincceceees 12-3
Overview of SQL Function CONTAINS ..ottt r e s eenes 12-3
Overview of XPath Function ora:contains............ccccccceveeeriereinininienneeieeeeeeseeeeeeesenes 12-4
Comparison of CONTAINS and 0ra:contains ............ccceveeiiiiinininiiiiccs 12-4
CONTAINS SOL FUNCHON ...ttt ettt sttt sttt st et sbe et sbe e e ebee e s 12-5
Full-Text Search using SQL Function CONTAINS .......cccccooiiiiiiiiieeeceeceeeeenees 12-5
Full-Text Boolean Operators AND, OR, and NOT ..........cccoviiiiiiniiiniiiiinccns 12-6
Full-Text Stemming: $ ........ccccoviiiiiiiiiiiii s 12-6
Combining Boolean and Stemming Operators...........ccccocceueucucecieeereeeeeeeeeenenennees 12-6
SCORE SQL FUNCHON ....eevvievieiecieeie ettt teete e et esteesaesseessesaeessesseessasssessasssessesseessesseessensens 12-6
Restricting the Scope of a CONTAINS Search..........ccoooiiiiiiiic 12-7
WITHIN Structure OPerator .........ccoeviiiiniiiiiiiiiiii e 12-7
Nested WITHIN ........cccocoiiiiiiiiiiiii s 12-7
WITHIN AEIDULES ..o 12-8
WITHIN and AND ..o s 12-8
Definition Of SECION ... 12-9
INPATH Structure Operator........cocciieiiiiuiiiiiiciciiicicictctte e 12-9
TEXE PAtR ..o 12-9

Text Path Compared to XPath ... 12-10

Nested INPATH........ccoiiiiiiiiiiic s 12-10
HASPATH Structure OPerator ..........cocviuiiiiiiiiiiiiiiiiiicsc s 12-11
Projecting the CONTAINS Result .......ccccoceeviiiiiiiiiiiiiiiiii e 12-12
Indexing with @ CONTEXT INA@X ......cueuiiimiiiiiiiicieiccc 12-12
Introduction to CONTEXT INAEXES......c.cccceuimimimiiiuiiiiiiiiiiieicicceeieeeeeeeeeeeeeeeeee s 12-12
CONTEXT Index on XMLType Table.........ccooreiiiiiiiiiii 12-13
Maintaining a CONTEXT INdeX .......cccccoeuvivininiiiniinniiiiiiiiiccccccccccccennes 12-13

Roles and Privileges ........cccvuviiirirriiircrirr e 12-14

Effect of a CONTEXT Index on CONTAINS ..o 12-14
CONTEXT INdeX Preferences. ...ttt 12-14
Making Search Case-SenSitive ..........cccccervuririririririirrrrrerr e 12-14
Introduction to SeCtion GIOUPS.......ccvuiviiiiiiiiiiiieicici s 12-15
Choosing a Section GIoup TYPe......cccvvvvviiiiiiiiiiiiniiccenes 12-15
Choosing a SECtiON GIOUP .....ccvvvivrereriiriririie e 12-16
ora:contains XQuery FUNCHON ... 12-17
Full-Text Search using XQuery Function ora:contains.............ccccccevvivivinnnnnnnnnnnnecnns 12-17
Restricting the Scope of an ora:contains QUETY ..........ccccooviiiiiiiiiiiiccccccceeeeeenenes 12-17
Projecting the ora:contains Result...........cccccoeiiiiiiiiiii 12-18
Policies for 0ra:containg QUETIES. .......cveieererierieieieieieeeeeteste e stestesteeeseeseesessessessessessensensenenns 12-18
Introduction to Policies for ora:contains QUETIES...........coeeueevreereevreeeereeeeeereereeeeeereeveenee 12-18
Policy Example: Supplied StOplist .........cccoeueieiiiiiiiiiiiiiiiiiicccn 12-19

Effect of Policies 0n 0ra:coNtains .........cccceeeveeieiininieicininieeeieeeeeeee e 12-19

XV



Policy Example: User-Defined LeXer ..........ccooeueviiiiiiiiiicieiicc 12-20

Policy Defaults........cccccovviiiiiiiiiiiiiiiiiiiiiiiii 12-21
Performance of 0ra:CONMtAINS .......c.c.cieiuimiiiiieicieceeee ettt 12-22
Use a Primary Filter in the QUery ... 12-22

XPath Rewrite and CONTEXT INA@XES ........cccceuviniiiiiiiiniiiciiiiccsicescneeescens 12-23

Text Path BNF Specification............cccoeoiiiiiiiiiiiiiceeceeeecneeesree e 12-25
Support for Full-Text XML EXamples..........cccccocoiiiiiiniiiiiiiiiincciissceescnnes 12-26
Purchase-Order XML Document, po00L.Xml........c.cocoiiiiiiiiiiiiiiiccicce 12-26
CREATE TABLE Statements ..........cccooeiiiniiiiiiiiiiiiicccscss s 12-27
Purchase-Order XML Schema for Full-Text Search Examples...........cccccocoviniiiiiiinnnnnn. 12-29

Partlll Using XMLType APIs

13 PL/SQL APIs for XMLType

Overview of PL/SQL APIs for XIMLTYPe.........cccooviimimimiiiiiiiitccsieseese et 13-1
APT FRALUTES.......eeiiiteet st 13-1
Lazy Loading of XML Data (Lazy Manifestation) ..........cccccocecevvvvenvvnnnrrrrereeene 13-2
XMLType Data Type Supports XML Schema..........cccccevuiiiiiiieiiiniiiiiiiiieeeeeeeeenes 13-2
XMLType Supports Data in Different Character Sets ............ccoooeuiiiriniiiiii 13-2
PL/SQL DOM API for XMLType (DBMS_XMLDOM)........ccccouvrminiimiiiriiiniiriiiinsiccnenenenenns 13-3
Overview of the W3C Document Object Model (DOM) Recommendation............c.ccceucueeee. 13-3
Oracle XML Developer's Kit Extensions to the W3C DOM Standard ..........c...cccocueee. 13-3
Supported W3C DOM Recommendations............ccocceueecueieceieeieiemecneeeeeeenenenenenenens 13-3
Difference Between DOM and SAX ..o 13-4
PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features..........ccccccceuvuriruiriiinnnnnnnnnen 13-4
XML Schema SUPPOTt.....c.cccuiiiiiiiiiiiciiciieieeeieeeee ettt eeeaees 13-4
Enhanced Performance ..o 13-5
Designing End-to-End Applications using Oracle XML Developer's Kit and Oracle XML DB.....
13-5
Preparing XML Data to Use the PL/SQL DOM API for XMLType .....ccccccoeeeecrcvcncnnnnne 13-6
Defining an XML Schema Mapping to SQL Object TYpes........ccocvvvuviiviiiininviniiiniiiininnn, 13-6
DOM Fidelity for XML Schema Mapping.........cccccceeueieiniririniiiiininiiiicicnsecessseeeieeas 13-7
Wrapping Existing Data into XML with XMLType VIiews........ccccccoeeiirnnnincreeccneene 13-7
DBMS_XMLDOM Methods SUpported...........cccoevviviiiiinininiiiiiiiiis 13-7
PL/SQL DOM API for XMLType: Node TYPes ......cccceeuririiiiiririiiiiiiiiciriiiiincecesceeeeas 13-8
Working with XML Schema-Based Data ... 13-9
DOM NodeList and NamedNodeMap ObjJects ..........cccocevvriiiiiiiniiiiiiiiiiiiiccces 13-9
Using the PL/SQL DOM API for XMLType (DBMS_XMLDOM)........ccceoeimrmiimiimiiiinennen 13-10
PL/SQL DOM API for XMLType — EXamples.........ccccoeuviiiniinininininiceceenes 13-10
Large Node Handling using DBMS_XMLDOM .........cccoooiiiiiiniiiiniccce i 13-12
Get-PUSH MOEL.....ooiiiiiiiiicc ettt 13-14
Get-PUIL MOEL ...t 13-15
Set-PUll MOdel ...t 13-16
SEt-PUSH MOMEL......oooiiiiiiiiiiiccc ettt 13-17
Determining Binary Stream or Character Stream ...........c.cccccceccevnieeinennnneereeeeeaes 13-19
PL/SQL Parser API for XMLType (DBMS_XMLPARSER)........cccccevuiviiniiiiiiiiiiinns 13-19
Features of the PL/SQL Parser API for XMLTyPe......ccccccovviiiinniniiniiiiiinnnciieae 13-19

XVi



14

15

16

Using the PL/SQL Parser API for XMLType (DBMS_XMLPARSER) .......cccccoviiiinininnnnes 13-19

PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR) ........ccccoovviiiiiiiircinns 13-20
Enabling Transformations and Conversions with XSLT..........ccccccoiiiiiiinininciicenenas 13-21
PL/SQL XSLT Processor for XMLType: Features............ccccoovnviiiiniiiiiiiiicnn, 13-21
Using the PL/SQL XSLT Processor API for XMLType (DBMS_XSLPROCESSOR) ........... 13-21

PL/SQL Translation API for XMLType (DBMS_XMLTRANSLATIONS).......cccccocvvrrrrinnnns 13-23
DBMS_XMLTRANSLATIONS Methods .......cccocevviiiiiniiiiiiiiiiiiiinas 13-24

PL/SQL Package DBMS_XMLSTORE

Overview of PL/SQL Package DBMS_XMLSTORE............cccccoiiiiiiniiiiiiccce 14-1

Using Package DBMS_XMLSTORE...........cccccooviiiiiiiii s 14-1

Inserting with DBMS_XMLSTORE ...........ccocoiiiiiiiiic s 14-2

Updating with DBMS_XMLSTORE ..........cccccoonimiiiiiiiiiiiissssssssnns 14-4

Deleting with DBMS_XMLSTORE .........ccoooiiiiiiiicec s 14-5

Java DOM API for XMLType

Overview of Java DOM API for XMLTYPE ..o 15-1

Java DOM API fOr XIMLTYPE .....coooviiiiiiiiiiiiiiccc s 15-1
Accessing XMLType Data using JDBC ..o 15-2

Using XMLType Data with JDBC........cccccoceiiiiiiiiiiiiiccs 15-2
How Java Applications Use JDBC to Access XML Documents in Oracle XML DB....... 15-2
Manipulating XML Database Documents using JDBC ..........ccooooioiiiiiiiiiiice, 15-4

Loading a Large XML Document into the Database using JDBC...............c.ccociviiiniininnies 15-11

Java DOM API for XMLType Features............ccccccovviiiiiiiiniiiiiiiiiccnes 15-13
Creating XML Schema-Based Documents............c.c.ccouiiiiiiiiiiiiiiicc 15-13

JDBC OF SQLJ ..ttt 15-14

Java DOM API for XMLType Classes............ccccovuiiiiiiiiiiiiiiiiiiiiicsccsse s 15-14
Java Methods That Are Deprecated or Not Supported ..., 15-15
Using the Java DOM API for XMLTYPe .....ccueioiiiiiiicciccc i 15-16

Handling Large Nodes using Java ..........ccccooviiiiiiiiiiiiiiiccs 15-16
Stream Extensions t0 Java DOM ..ottt sttt 15-17

Get-PULL MOAEL ...ttt 15-17

Get-PUSh MOdeL.......ooiiiiiiiic s 15-18

Set-Pull MOdel .......coviiiiiiiiiiciciicc 15-18

Set-PUSh MOl ......ccoomiiiiiiiiicc et 15-19

Using the Java DOM API and JDBC with Binary XML...........c.ccccovniiinniiiiine, 15-20
Using the C API for XML

Overview of the C API for XML (Oracle XDK and Oracle XML DB)........cccccccoviriiiiiiincnennns 16-1

Using OCI and the C API for XML with Oracle XML DB............cccccccoovviininini 16-2
Accessing XMLType Data Stored in the Database...........cccooovvieiiniiiiiiiicccce, 16-2
Creating XMLType Instances on the CHENt .........ccccccieiiiiiiiiiccecccceecceeeeeeeeees 16-2

XML Context Parameter for C DOM API FUNctions.............ccccocoevviniiiiininiiinicccee 16-2
OCIXMIDbINItXMICEX() SYNEAX ...vvviiiiiiiiiiiiiciicicicicceeeeeee s 16-2
OCIXmIDDbFreeXmlCtX() SYMEaX......ccccceueruriiiiirieiriiiereieeieirereeeeee e seseees 16-3

Initializing and Terminating an XML Context .............cccocoiiiiiiiiiiiiieeea 16-3

xvii



17

Using the C API for XML with Binary XML...........ccccooooiiii e 16-6
Using the Oracle XML Developer's Kit Pull Parser with Oracle XML DB .............c.cccceevennn 16-9
Common XMLType Operations in C ..o 16-14

Using Oracle Data Provider for .NET with Oracle XML DB

ODP.NET XML Support and Oracle XML DB ........cccccocriiiiniinceneeneeneeeneeeneee e 17-1
ODP.NET Sample Code.........cocoeriiiriiiriirieirieinietretetet ettt ettt seeseseesesaesessesesaenens 17-1

Part IV Viewing Existing Data as XML

18

19

xviii

Generating XML Data from the Database

Overview of Generating XML Data From Oracle Database..............ccccocooviiiiiiiiiiiiinnn, 18-1
Generating XML using SOL FUNCHONS............ccccooiiiiiiiiicccc s 18-2
XMLELEMENT and XMLATTRIBUTES SQL /XML Functions.........c.ccccooveeininiinrecncnnnnnnnn. 18-3
Escaping Characters in Generated XML Data ........c.ccooviiiiiiiiiiiiiic 18-4
Formatting of XML Dates and Timestamps..........c.cccevereieiiimieieiiiicie e 18-5
XMLEIement EXamPIes........c.ccviuiiririririiiiiiicceereeeeeeeeeeeeee e eeeeees 18-5
XMLFOREST SQL/XML FUNCHON ...cocviviiiiiiiiiiiiiiiiicicecc s 18-9
XMLCONCAT SQL/XML FUNCHON ..ot 18-11
XMLAGG SQL /XML FUNCHON ....c.vietietieteeiececteetteteete ettt ettt eeaeeteeeve e esaeerseseerseseereenns 18-12
XMLPI SQL /XML FUNCHOI ..ottt 18-15
XMLCOMMENT SQL /XML FUNCHOI .....ocviviiiiiiiiiiniiiiiccs s 18-16
XMLSERIALIZE SQL /XML FUNCHON ......cvuiiiiiiniiiiiiiiciicns e 18-16
XMLPARSE SQL/XML FUNCHON ....cvoviviiiiiiiiiiiiiicccc s 18-17
XMLROOT Oracle SQL FUNCHON .....cooviiiiiiiiiiiiicccc e 18-18
XMLCOLATTVAL Oracle SQL FUNCHON ........coveivieieereeieereereete ettt ettt eveeae e 18-19
XMLCDATA Oracle SQL FUNCHON .......oouiiiiieieiieteeeteeeete ettt e e ssa e se s 18-21
Generating XML using DBMS_XMLGEN ...........ccccooiiiniic e 18-21
Using PL/SQL Package DBMS_XMLGEN .......cccccocviiiiiiniiiiicceeceecnnes 18-22
Functions and Procedures of Package DBMS_XMLGEN .........cccccocovninniiiinnas 18-23
DBMS_XMLGEN EXaMPIES .....c.cocviiriiiiiiiiiiiiiiiiiiiiiinicrrss s 18-28
SYS_XMLGEN Oracle SQL FUNCHON..........c.oooiiiiiiiiiecieceeee ettt eeve e s ve e aaeeeae s 18-46
Advantages of using Oracle SQL Function SYS_XMLGEN .........cccccooviiiiiiiiiiiininns 18-47
Using XMLFormat Object TYPe .....ccccovuviiiiiiiiiiiiiiiiiiiiicnsn s 18-47
SYS_XMLAGG Oracle SQL FUNCHON .........c.oooiiiiiiiiicieceeee ettt esre e s ev e aae e e 18-54
Guidelines for Generating XML with Oracle XML DB..........ccccoooiiiiiine, 18-54
Ordering Query Results Before Aggregating, using XMLAGG ORDER BY Clause.......... 18-54
Returning a Rowset using XMLTABLE ... 18-55
XMLType Views

What Are XIMLTYPe VIEWS?......c.coiiiiiiiiiiiiiii s 19-1
Creating XMLType VIews: SYNtaX ......cccccceuiiiuriiiiiicieieiceei i 19-2
Creating Non-Schema-Based XMLType VIews ...........ccccooiiiiiniiiiininiiccccenns 19-2

Creating Non-Schema-Based XMLType Views using SQL/XML Publishing Functions .... 19-3
Creating Non-Schema-Based XMLType Views using Object Types and SYS_XMLGEN.... 19-3
Creating XML Schema-Based XMLType VIEWS ...........cccccoiuiuiiiiiiiiiiiiiiicicccicieeeee e 19-4



Creating XML Schema-Based XMLType Views using SQL /XML Publishing Functions.... 19-4

Using Namespaces with SQL /XML Publishing Functions..............cccccccevviinninnnnnn. 19-7
Creating XML Schema-Based XMLType Views using Object Types or Object Views........ 19-11
Creating XMLType Employee View, with Nested Department Information............... 19-11

Step 1. Create Object TYPeSs ......ceuoiiiirieiiccee e 19-12

Step 2. Create and Register XML Schema emp_complex.xsd ..........cccoceeuverururenence. 19-12

Step 3a. Create XMLType View emp_xml using Object Type emp_t........ccccuc.. 19-14

Step 3b. Create XMLType View emp_xml using Object View emp_v ................... 19-14

Creating XMLType Department View, with Nested Employee Information............... 19-14

Step 1. Create Object TYPES .....ccccoviviviiiiiniiiiiii e 19-14

Step 2. Register XML Schema dept_complex.Xsd .........cccooorueiniiirieiiiniiiiicc, 19-15

Step 3a. Create XMLType View dept_xml using Object Type dept_t ...........c..... 19-16

Step 3b. Create XMLType View dept_xml using Relational Data Directly ........... 19-16

Creating XMLType Views from XMLType Tables............cccocoiiiiiiiiiiiiiiiiiiccccnes 19-17
Referencing XMLType View Objects using SQL Function REF ...............cccccoviiinniin. 19-18
DML (Data Manipulation Language) on XMLType Views...........ccccooiiiiiiiiiiicinnennes 19-18

20 Accessing Data Through URIs

Overview of Oracle XML DB URL Features .............c.cccoooiiiiiiniiiiicciceeeieeeeeieennes 20-1
URIS and URLS .....c.cociiiiiiiiiiiiii s 20-1
URIType and its Subtypes ... 20-2
DBUris and XDBUTris — What FOI7?........ccccoiiiiiiiiiiccee s 20-3
URIType Methods........cccoouiiiiiiiiiiiiiiiiiic s 20-4
HTTPURIType PL/SQL Method GETCONTENTTYPE() ....ccovvviviiiiiiiiiiciiccieiicnnes 20-5
DBURIType PL/SQL Method GETCONTENTTYPE() .....ccooevvviviiiiiiiiiiiiiiiicicciien 20-5
DBURIType PL/SQL Method GETCLOB() ......cccecvuiiiiiiiiiiiiiiiiciniccceces 20-6
DBURIType PL/SQL Method GETBLOB() ......cccovvvuiviiiiiiiiiiieiiincececcsenenen 20-6
Accessing Data using URIType INStances ............ccccocovvvviiiiiiiiiiniiiiiiics 20-6
XDBUris: Pointers to Repository Resources ..o 20-10
XDBUTL URL SYNEAX c.vviiiiiiiiiiiiiiciciiiici s 20-10
XDBUTIL EXAMPIES ..ottt 20-10
DBUTris: Pointers to Database Data..........ccccoociiniiiiiiiniiiiciece s 20-12
Viewing the Database as XML Data........ccccoeriirininiiiiiiiccicccccccceeicce s 20-12
DBUTL URL SYNEAX ..ottt sttt 20-14
DBUris are Scoped to a Database and Session...........cccccccvviciiivininiiiininiininncnnes 20-15
DBUTL EXAMPLES ...ttt 20-16
Targeting a Table..........coii s 20-16
Targeting a Row in @ Table..........ccccccoviviiiiiiiiiniiiiiiiiic s 20-17
Targeting @ COIUMIN ... 20-17
Retrieving the Text Value of @ COIUMIN ........ccocvviviiiiiiiiiiiics 20-18
Targeting @ ColleCtion ..........cccouviviiiiiiiiiiiiii e 20-19
Creating New Subtypes of URIType using Package URIFACTORY .......cccccoviiiiniiniinnnas 20-20
Registering New URIType Subtypes with Package URIFACTORY ........c.ccccooriiiiininnne. 20-20
SYS_DBURIGEN SQL FUNCEHON ......oootiiiiiiiieiiecieeeteete ettt e eteeteestaesae e aaesseessaesaseesaessseenses 20-22
Rules for Passing Columns or Object Attributes to SYS_DBURIGEN ...........cccccevirninncnce. 20-23
SYS_DBURIGEN SQL Function: Examples..........ccccccviiiininniiiiicccccnes 20-24
Returning Partial RESUILS ..........cccccouiiiiiiiiiiiiiiiiiiiii e 20-24

Xix



RETURNING URLSs to Inserted Objects ..........ccccooeueieiiiiiiiiiieiiiiiiiis 20-25

DBUTIISEIVIEt ... 20-26
Overriding the MIME Type using a URL.......cccccccoeuiiiiiiiniicrcrcrreceeecee s 20-27
Customizing DBUTIServIet ... 20-27
DBUTIISEIVIet SECUTILY ....cocviviviiiiiiiiiiiiicic e 20-28
Configuring Package URIFACTORY to Handle DBUTIS .......ccccccceuiueiiecieniiciccicceeeene 20-29

PartV Oracle XML DB Repository

21 Accessing Oracle XML DB Repository Data

Overview of Oracle XML DB RepoSitory .........cccccoviiiiiiiiiniiiiiiiiiiiiicccecenes 21-1
Two Ways to Access Oracle XML DB Repository Resources...........cccocueviicieiiiicicieinennnen, 21-3
Repository Terminology and Supplied Resources ... 21-3
Repository Terminology ... 21-3
Supplied Files and FOLers...........ccoviiiiiiiiiiiiiiiiiiiiicc s 21-4
Oracle XML DB Repository ReSOUICeS .............ccooiiiiiiiiiiiiiiiiiiiiciceee e 21-5
Where Is Repository Data Stored? ... enenens 21-5
Names of Generated Tables ...........c.cccoviiiiiiiiiiiiiii s 21-5
Defining Structured Storage for Resources............coocuouiiriiioiiiciiiiic 21-6

Oracle ASM Virtual FOIAer.........ccooviiiiiiiiiiiic e 21-6
Path-Name ReSOIUtION. .......ccoiuiiiiiiiiiiiiiiic s 21-6
LINK TYP@S ..ttt 21-7
Repository and Document Links .........ccccccociiiiiiiiiiiiecceeceeeeeeeeeeeeeeeeees 21-7

Hard Links and Weak Links ... 21-7
Creating a Weak Link with No Knowledge of Folder Hierarchy .........c...ccccceooonniii 21-8
Restricting Multiple Hard LINKS........cccccoviiiiiiiiniiiicrcccereece s 21-9
Navigational or Path Access to Repository Resources...............cccccoeveiiiiiiiiiniccic 21-9
Accessing Oracle XML DB Resources using Internet Protocols............cccooeiriiniinennn. 21-10
Where You Can Use Oracle XML DB Protocol ACCess.........oovirmrriiniieneriiiiieriiinennens 21-11

UsINg ProtoCol ACCESS .......cucvviiiiiieiiiictee s 21-11
Retrieving Oracle XML DB RESOUICES .........cccouviriiiriiiniiiiiiiiiiiniiiincsisccecaes 21-11

Storing Oracle XML DB RESOUICES........cccovririririiririiiiiiteecececccccnsece e 21-11

Using Internet Protocols and XMLType: XMLType Direct Stream Write..................... 21-12
Accessing Oracle ASM Files using Protocols and Resource APIs — For DBAs.................... 21-12
Query-Based Access to Repository Resources..............ccooviiiiiiiniiiiiiniiiccces 21-13
Servlet Access to Repository ReSOUTCES............cccccciiiiiiiiiiiiiiiiiiiiicc e 21-14
Operations on Repository ReSources ... 21-14

22 Configuring Oracle XML DB Repository

Resource Configuration Files Configure a Resource ..., 22-1
Configuring a RESOUICE. ...t s 22-2
Common Configuration Parameters...............cccoooiiiiiiiiiiiiiic e 22-3
Configuration Element ResCONfig..........cccceeuiuimiiiiiiiiiiiiiiiiiccccccees 22-3
Configuration Element defaultChildConfig ...........cccccoeviirnniniinrccrrcecreeeeereees 22-3
Configuration Element applicationData...........ccccoevviiiiiiiiiiiiiiiicccs 22-4

XX



23

24

25

Using XLink and Xinclude with Oracle XML DB
Overview of XLink and XINclude .............ccocoiiiiiiiiiiiic e 23-1
XLink and XInclude Link TYPes...........cccccuviriiiiiiniiiiiiiic s 23-2
XLink and XInclude Links Model Document Relationships..........cccccocovvviiiiiniiinicnnnnn, 23-2
XLink and XInclude Link TYPes ........ccoeuiiiiiiiiiiiicieiec 23-2
XInclude: Compound DOCUMENLS............ccouiieiiiriiriiiieicieeteeeeeeree et 23-3
Using XLink with Oracle XML DB .........ccccccocoiiiiiiiiiiiicc s 23-4
Using XInclude with Oracle XML DB..........ccccccoviiiiiiiiiiniiiiis 23-4
Expanding Compound-Document INCIUSIONS .........c.ceeueuiicmiiiiiiiiiiiiiecccceecceiceeeeeees 23-5
Validating Compound DOCUMENES ..........c.coiriiieiiiiiiieict e 23-6
Updating Compound Documents ............cc.c.oerieiiiiieieieiccieece e 23-6
Versioning, Locking, and Controlling Access to Compound Documents............ccccceueuenee 23-6
Examining XLink and XInclude Links using DOCUMENT_LINKS View ..........c.ccccccoovnunnia. 23-7
Querying DOCUMENT_LINKS for XLink Information ..o, 23-7
Querying DOCUMENT_LINKS for XInclude Information..........ccccceeeuvvvvnrnnnnnncncecenes 23-8
Configuring Resources for XLink and XInclude............c.ccocoooiiiiiiiiiiiiiieenes 23-9
Configuring Treatment of Unresolved Links: UnresolvedLink Attribute............ccccccceuevnnene 23-9
Configuring the Document Links to Create: LinkType Element ...........ccccccvviiiiiiiicnnes 23-10
Configuring the Path Format for Retrieval: PathFormat Element............ccccocoovveiirninnnnne. 23-10
Configuring Conflict-Resolution for XInclude: ConflictRule Element .............cccccceeenee.. 23-11
Configuring Decomposition of Documents using XInclude: SectionConfig Element........ 23-11
XLink and XInclude Configuration Examples...........ccccoeuoieiiiiinininiiecee 23-12
Managing XLink and XInclude Links using DBMS_XDB.processLinks.............cccccccevunie. 23-13
Managing Resource Versions
Overview of Oracle XML DB Versioning............cccccoviiiiiiiiiiiiiiiiccccceeeeeeenennas 24-1
Versioning and Resource IDS............ccccocoiiiiiiiiiiic s 24-2
Versioning and ACLS ... 24-4
Resource Versioning Examples.............ccooiiiiiiiiiii e 24-4
Accessing the Repository using RESOURCE_VIEW and PATH_VIEW
Overview of Oracle XML DB RESOURCE_VIEW and PATH_VIEW ..........c.ccccccvniicnnncnene. 25-1
RESOURCE_VIEW Definition and SEUCHUTE .......ooveveeieeeeeeeeeeeeeee et eveeeeeaeeeeeaeesenes 25-2
PATH_VIEW Definition and SEFUCEUTC.......ooviiiiieeeciee ettt seenneees 25-3
Understanding the Difference Between RESOURCE_VIEW and PATH_VIEW.................. 25-4
Operations You Can Perform using UNDER_PATH and EQUALS_PATH......................... 25-5
RESOURCE_VIEW and PATH_VIEW SQL Functions ..........c.cccccceviivininnncinns 25-5
UNDER_PATH SQL FUNCHON «..eevviiiiiiiicieiricicieeeeenicseecie et 25-5
EQUALS_PATH SQL FUNCHON......ceiitiiitiieieeiiecie ettt ettt e seaeecve e taeeveeveesbeeaeessneesaasneanns 25-7
PATH SQL FUNCHON ....evieiiiettcieseete sttt ettt e teeeeeae st esaesstesbessaessesssessasssessesssessesssesssessensens 25-7
DEPTH SQL FUNCEOMN. ...ttt ettt ettt sttt et et s bt et st e be e st et e eneesaesaeensenneen 25-8
Using RESOURCE_VIEW and PATH_VIEW SQL Functions ............cccccoeviiniiiiininiinnnnen, 25-8
Accessing Repository Data Paths, Resources and Links: Examples.........cccccooveriiiiniinnnan. 25-8
Deleting Repository Resources: EXamples ..........cccccoviiviviniviiiiininiiininnnccececcaes 25-14
Deleting Nonempty Folder RESOUICES..........c.cccvuruiiiiiiririririiicirrcccceeeeere s 25-15
Updating Repository Resources: EXamples ... 25-15

XXi



26

27

XXii

Working with Multiple Oracle XML DB ReSoUrces.............cccoooviiiiiiiiiiiiiccciccnnnes 25-18
Performance Tuning of Oracle XML DB Repository Operations ..............cccccoeiiiiiiinnnne. 25-19
Searching for Resources using Oracle Text ............cccocovuiiiniiiiiiiiiiiies 25-20

Accessing the Repository using PL/SQL

Overview of PL/SQL Package DBMS_XDB...........ccccccoooiiiiiiiiiiiiiccens 26-1
DBMS_XDB: Resource Management ...............ccccoiviviiiiiiiiiiiiiiisesenennensenns 26-1
DBMS_XDB: ACL-Based Security Management................cccccceviviininninnninis 26-3
DBMS_XDB: Configuration Management................cccccccoviniiiiiininiiiinincces 26-7

Repository Access Control

Access CONEIOL CONCEPLS ........ccorviuiriiiiiieiiiieeee ettt ans 27-1
Principal: A User OF ROIe........ccoiiiiiiiiiiiiic s 27-2
Database Roles Map Database Privileges to USers .........ccccooououininiiiicieieiiceeicci 27-2
Principal DAVIOWNIET ...ttt aenes 27-2
Privilege: A PeImiSSION ........cceuiiiuiieieiicicie ettt 27-3
Access Control Entry (ACE) ... s 27-3
AcCess CONEIOl LISt (ACL) .oouviieieieieirieiesiei ettt e ettt s et esaesaeseesessassessessensas 27-4
Database Privileges for Repository Operations..............cccooiiiiiniiiininiiiiiiccces 27-4
PrIVIIEEES. ... 27-5
ALOMIC PrIVIIEZES ...ttt 27-5
Aggregate Privileges........ococoiiiiriiiiii 27-6
ACLS and ACES.......cciiiiiiiiiiiiii s 27-6
SYSTEIM ACLS ..ot s 27-7
ACL and ACE Evaluation ... s 27-8
ACL ValIdation.......cceueiiiiiiiiiiieisiice s 27-8
ACL INNETITANCE ....oovvviiiitierct s 27-9
Complementing the Principals in an ACE: Element invert ...........ccccocovvvnnnnnnnnnnnn 27-10
ACE Validity Time Period ........cccceeiviiiiniiiiiiiiiiiiiicscce s 27-10
Working with Access Control Lists (ACLS) ..o 27-11
Creating an ACL using DBMS_XDB.CREATERESOURCE...........ccccooiiiiiiiiiicice, 27-11
Retrieving an ACL Document, Given its Repository Path.............ccccoooiiiiin, 27-12
Setting the ACL Of @ RESOUICE.........ccouviiiiiriic e 27-12
Deleting an ACL........ooooiiic 27-12
Updating an ACL ... 27-13
Retrieving the ACL Document that Protects a Given Resource..........c.cccccceuvuvuvvvviniinnene. 27-14
Retrieving Privileges Granted to the Current User for a Particular Resource..................... 27-15
Checking Whether the Current User Has Privileges on a Resource.........c.cccococoeuerriinunnnnee. 27-15
Checking Whether a User Has Privileges using the ACL and Resource Owner................. 27-16
Retrieving the Path of the ACL that Protects a Given Resource..........c.ccccovevvieiriieininnicnnn. 27-17
Retrieving the Paths of All Resources Protected by a Given ACL..........cccocovviiniiiiincnnnn. 27-17
ACL CaChing ......cooiiiiiiiiiiiii s 27-18
Repository Resources and Database Table Security...........cccooooiiiiiiiiins 27-18
Optimization: Do not enforce acl-based security if you do not need it ..........cccceeveenenenn. 27-19
Integrating Oracle XML DB with LDAP..........ccccccocooiiiniiiiica 27-20



28

Accessing the Repository using Protocols
Overview of Oracle XML DB Protocol Server ... 28-1
SESSION POOLING ......ovviiiiiiiiccc s 28-2
Oracle XML DB Protocol Server Configuration Management...............cccocooeriiiniiiiiiennnns 28-3
Configuring Protocol Server Parameters............ccoceueuiirieieioicicieeiccieecce e 28-3
Configuring Secure HTTP (HTTPS) ....c.ccccoiiiiimiiiiiieecceeieieeieeeeee e 28-6
Enable the HTTP Listener to Use SSL..........ccooiiiiiiiniiiciccce s 28-7
Enable TCPS Dispatcher ... 28-7
Interaction with Oracle XML DB File-System Resources...........cccccococueuceuciceecieeiceeeecnenene 28-7
Protocol Server Handles XML Schema-Based or Non-Schema-Based XML Documents..... 28-8
Event-Based LOZZING ..o 28-8
Using FTP and Oracle XML DB Protocol Server.............cccoviiiininiiininiiiiccccccnes 28-8
Oracle XML DB Protocol Server: FIP Features ... 28-8
FTP Features That Are Not Supported. ..o 28-9
Supported FTP Client Methods ........c.cccciuiiiiiiiiiiicccceccceeccceeeeeeeeeeeeeeeeeees 28-9
FTP QUOLE MEENOAS ......ooiiiieiicieecteeeee ettt sttt sttt b e e s e e e seeaesenasseennas 28-10
Using FTP with Oracle ASM Files..........cooiiiiiiic s 28-11
Using FTP on the Standard Port Instead of the Oracle XML DB Default Port.............. 28-12
Using IPv6 IP Addresses With FTP ........cocooviiiiiiii e 28-13
FTP Server Session Management...........ccccoueveieiiiiiiiiiiiiiiniisesi s 28-14
Handling Error 421. Modifying the Default Timeout Value of an FTP Session............ 28-14
FTP Client Failure in Passive Mode ..........cccccoeviiniiiiiiininiiiiies 28-14
Using HTTP(S) and Oracle XML DB Protocol Server............cccooiiiiiiiiiiiiiiiiiicnes 28-14
Oracle XML DB Protocol Server: HTTP(S) FEatures .........ccooveiveircieiinineriesieieieeeeeeeeeveseens 28-15
HTTP(S) Features That Are Not Supported..........ccooviiiiiiiiiis 28-15
Supported HTTP(S) Client Methods...........c.ooiiieiiiiiiic e 28-15
Using HTTP(S) on a Standard Port Instead of an Oracle XML DB Default Port.......... 28-15
Using IPv6 IP Addresses with HTTP(S) .....cooovviviiniiiiiiiiiiiiiis 28-16
HTTPS: Support for Secure HTTP ..o 28-16
Controlling URL EXpiration Time ........ccccooeiirniiiiiiiiiicccccccceeeenceeneneenenenes 28-17
Anonymous Access to Oracle XML DB Repository using HTTP ..o 28-17
Using Java Servlets with HTTP(S) ... 28-18
Embedded PL/SQL GateWaY .......cceueururiririiiririririiiierrisieeese s eseeees 28-18
Sending Multibyte Data From a Client..........cccoouoiiiiiiiiiii 28-19
Characters That Are Not ASCILin URLS.......cccccceiiiiiiiininiiiiiiiicnnncncsenes 28-19
Controlling Character Sets for HTTP(S) ......cccccoeuiuiiiiiiiiniiiieiccreecceeeeeereeeaes 28-20
Request Character Set ... 28-20
Response Character Set..........cociiviiiiiiiiiiiiiiiiiii s 28-20
Using WebDAYV and Oracle XML DB.........cccccoooiiiiiiiiicns 28-20
Oracle XML DB WebDAYV Fatures ..........ccccocvvvviiiiiiiiiiiiiiiiiiiins 28-21
WebDAYV Features That Are Not Supported............cccoooiiiiice 28-21
Supported WebDAV Client Methods ..........ccoovvvirnnninnrrcrnnre e 28-21
Using WebDAYV with Microsoft Windows XP SP2...........cccccoeeiiiiiiiiiiicn 28-21
Creating a WebFolder in Microsoft Windows using Oracle XML DB and WebDAV ........ 28-22

xXiii



29

30

31

XXiv

User-Defined Repository Metadata

Overview of Metadata and XML .............cccocoiiiiiiii e 29-1
Kinds of Metadata — Uses of the Term ... 29-2
User-Defined Resource Metadata ...........cccceiuiuiiiiiiiiiiiiiiiiiiees 29-2
Scenario: Metadata for a Photo Collection ..o 29-3

XML Schemas to Define Resource Metadata.............ccccocooiiniiiiniiiiii 29-3

Adding, Updating, and Deleting Resource Metadata...............ccccccovviviiinniinniiiii 29-4
Adding Metadata using APPENDRESOURCEMETADATA..........ccccooovinninnnniniiiien 29-5
Deleting Metadata using DELETERESOURCEMETADATA ..ot 29-6
Adding Metadata using SQL DML ........ccccooiiiiiiii i 29-7
Adding Metadata using WebDAV PROPPATCH ........ccccccoviviiiiiiniiiiiiiiicc, 29-8

Querying XML Schema-Based Resource Metadata..............cccoviiiiniiiniii, 29-9

XML Image Metadata from Binary Image Metadata..............ccooooviiiins 29-10

Adding Non-Schema-Based Resource Metadata ..............cccoooiiiiiiiiiiins 29-11

PL/SQL Procedures Affecting Resource Metadata ... 29-12

Oracle XML DB Repository Events

Overview of Repository EVents.............cccoviiiiiiiiis 30-1
Repository Events: Use Cases.........cocvuirieieiiiucieiiiicieie it 30-1
Repository Events and Database Triggers.........c.cocooirueiiiicieiiioiicicieccec e 30-2
Repository Event Listeners and Event Handlers.............cccooooiiiiiiiiiiiiicccceenee 30-2
Repository Event Configuration ...........coccueuiiiiiiiiiicicc 30-2

Possible Repository EVENtS ..o 30-3

Repository Operations and EVents ..o 30-5

Repository Event Handler Considerations..............c.cccooooiiiiiiiiiiiiiiiccce 30-6

Configuring Repository EVents ... 30-8
Configuration Element eVent-liSteners ...........ccccccceuiiiiiiiiiinininiccrreceereecree s 30-8
Configuration Element StENeT ..ot 30-9
Repository Events Configuration Examples ..o, 30-9

Using Oracle XML DB Content Connector

Overview of JCR and Oracle XML DB Content Connector .............cccoeeeveererenieinennennennnenees 31-1
About the Content Repository API for Java (JCR) ..o 31-1
About Oracle XML DB Content CONNECLOT .......ccecevueereirreiriertnieinieineeereseereseeeseeneseesesseneneene 31-2

How Oracle XML DB Repository Is Exposed in JCR ..........ccccccoeviiiiiiniiniinnncc 31-2
Example of How Files and Folders are Exposed in JCR.......c.ccccccceiiiiiiinniiciiccceee 31-3
Oracle Extensions to JCR Node Types ...t 31-5
Binary and XML CONtent .........ccccocuciiiiiiiiiiiiiiicice s 31-5
System-Defined Metadata...........cccceeuiuiiiiiiiiiiiiceceeceee s 31-5
User-Defined Metadata ..........cceevreririiiriinieincieiiece ettt sttt sae e nene 31-6
Hard Links and Weak LINKS........ccoceciiiriririresesiesieieieesee ettt sttt neesessenas 31-6

How to Use Oracle XML DB Content CONNEctOr...........ccccovueivieiriiineineeneineneeereeeneeeesnenes 31-7
Setting CLASSPATH .....ccoiiiiiiiiiiiiic s 31-7
Obtaining the JCR Repository ObJECt.........ccciiiiiiiiiiiiiiiiiccciccceccceee s 31-7
Sample Code t0 Upload File.........ococoiiiiiiiiiiiiiiiiccccceceee e 31-8
Additional Code SAMPIES .........coiuiiiiiiiiiiiiiii s 31-9



32

33

Logging API for Oracle XML DB Content COnNector ...........c.ccoeeeeieeeiiiieiiieeeeceeennens 31-9

Supported JCR Compliance Levels ..........cooouiiiiiiiic 31-10
Oracle XML DB Content Connector Restrictions ..........ccccoeveiviiiiiicniiiinnicee, 31-10
Default Workspace Name...........ccccovvveiiviiiiiiiiniiiic s 31-10
Operations Restricted to Specific Node Types ........ccccuevirieiiiiiciiice 31-10
Determining the State of Files or Folders...........cccccccociiniiiinniiiiccccccereeaes 31-10
Interaction Between Binary and XML Content ............cccoooiiiiiiiiniiicccccin 31-10

Order in Which Changes Are Saved ... 31-10
Undefined PrOPerties ..ot seneeaes 31-10

Node Type nt:base Is ADStract ........c.coveiuiieiiici e 31-11

Node jcr:content Is Created Automatically........ccocouoiiiiiiiiiiiiiii 31-11

Saving Normalizes Node JCr:XMItEXt ......coveviiririririririririirr e 31-11

Node Type mix:referenceable ............ccoooiiiiiiiiii 31-11
Full-Text INAeXINg.........ccoovviiiiiiiiiiiiiiiis e 31-11

Using XML Schemas with JCR .........ccccccooiiiniiiii s 31-11
Why Register XML Schemas for Use with JCR?........ccccooiiiiiii 31-11
How to Register an XML Schema with JCR.......cccoooiiiii 31-13
How JCR Node Types are Generated from XML Schemas..........ccccccevuruvervrenernnncrrerenecnes 31-14
Built-In SIMpPle TYPES ..ot 31-14

XML Schema-Defined Simple TYpPes ........cccoveuiieiiiiiiiiiiccc s 31-16
COMPLEX TYPES ...t 31-17

Global Element Declarations............cccceeeeieieieiiiiiiiniiiiiicieees 31-17

Writing Oracle XML DB Applications in Java
Overview of Oracle XML DB Java Applications............cccoooiiiiiiiiiiiiiiicceceeenes 32-1
Which Oracle XML DB APIs Are Available Inside and Outside the Database?.................... 32-1
Design Guidelines: Java Inside or Outside the Database? ..............ccccccccocivviiiiniiniine, 32-2
HTTP(S): Accessing Java Servlets or Directly Accessing XMLType Resources..................... 32-2
Accessing Many XMLType Object Elements: Use JDBC XMLType Support .........ccceuvvenee 32-2
Use the Servlets to Manipulate and Write Out Data Quickly as XML.........cccccccoeeveurncnnnnne. 32-2
Writing Oracle XML DB HTTP Servlets in Java..........cccccocovviiiniiiiiiiiiccc 32-2
Configuring Oracle XML DB Servlets ..o 32-3
HTTP Request Processing for Oracle XML DB Servlets ...........cccooviviiiiiiiiniiie, 32-6
Session Pool and Oracle XML DB Servlets ... 32-7
Native XML Stream SUpport.........cccccoiiiiiiiiiiiiicc s 32-7
Oracle XML DB Servlet APIS ...........coooiiiiiiicccctctcetctccscteee sttt 32-7
Oracle XML DB Servlet EXample...........ccocooooiiiiiiiiiiiiiiiice s 32-7
Using Native Oracle XML DB Web Services

Overview of Native Oracle XML DB Web Services...........ccccoooiiiiiiiiniiiiccciecceeeennas 33-1
Configuring and Enabling Web Services for Oracle XML DB...............cccccccoiiiiiiiiiiiinn, 33-2
Configuring Web Services for Oracle XML DB .........ccccccciiiiiiiiiccecceeeeeeeeeeees 33-2
Enabling Web Services for Specific USers..........c.ooveuimiiiniiiiiici 33-3
Querying Oracle XML DB using a Web Service.............cccccooiiiiiiiiiiiicicccceennas 33-3
Accessing PL/SQL Stored Procedures using a Web Service .............cccoviiiiniinniinnnnn, 33-6
Example of Using a PL/SQL Function with a Web Service .........ccooviiinniiinniincnn, 33-7

XXV



Part VI Oracle Tools that Support Oracle XML DB

34

35

36

XXVi

Administering Oracle XML DB
Installing Oracle XML DB..........cccoooiiiiii e 34-1
Installing Oracle XML DB with Database Configuration Assistant ...........ccccccecevvvvenenene. 34-1
Dynamic Protocol Registration of FTP and HTTP(S) Services with Local Listener....... 34-2
Changing FTP or HTTP(S) Port NUMDbETS .......c.cocourmiiiiiiiiicciecc e 34-2
Post-Installation.........ccceiiiiiiiieieieeeee 34-2
Installing Oracle XML DB Manually without DBCA ............cooioii, 34-2
Post-INStallation...........cooiiiiiiiiiiiiiiii s 34-3
Upgrading an Existing Oracle XML DB Installation.............ccccoviiiiininiiie, 34-3
Validation of ACL Documents and Configuration File...........cccooooiiiiiii, 34-3
Administering Oracle XML DB using Oracle Enterprise Manager..............cccccocevuvvniinnnnnnnn 34-4
Configuring Oracle XML DB using xdbconfig.xml..............cccooiiinnn, 34-5
Oracle XML DB Configuration File, xdbconfig.xml.........ccccooooiiiiiiiii 34-5
<xdbconfig> (Top-Level Element)...........cccooeiiiiiiiiioiiiiccc i 34-5
<sysconfig> (Child of <XdbCONIg>) ....ccovvvvviiiiiririiiii e 34-5
<userconfig> (Child of <xdbconfig>) .......cccocovivviiiiiiiiie 34-6
<protocolconfig> (Child of <syscoOnfig>) .......ccccoemiiriiiiiiiii, 34-6
<httpconfig> (Child of <protocolconfig>)......ccooviviririniririiriiiiccc e 34-6
<servlet> (Descendant of <httpconfig>)........cccouiviiiiiiiiiiiiiii, 34-7
Oracle XML DB Configuration File Example .........cccccoooiiiiiiii 34-7
Oracle XML DB Configuration APL.........cccccccoiiiiiiiniiireereeeeeesese s 34-10
Configuring Default Namespace to Schema Location Mappings ............cccccueueiiruennne. 34-10
Configuring XML File EXteNnSions ..........ccccoeuoiimieieiiicicieiiccie i 34-12
Package DBMS_XDB_ADMIN..........ccccooiiiiiiiiiiiis s 34-13
Loading XML Data using SQL*Loader
Overview of Loading XMLType Data Into Oracle Database.............c..cccccoovviniinninnnnn 35-1
Loading XMLType Data using SQL*Loader .............cccocoiiimiiiiiiiiiiccceeeeeeennen 35-1
Loading XMLType Data in LOBs using SQL*Loader...........ccccceeiiiiniiiinniiiciciciccne, 35-2
Loading LOB Data in Predetermined Size Fields........c.cccocoviiiniinninniicrccccee 35-2
Loading LOB Data in Delimited Fields .........c.cccooioiiiiiiiiiiii 35-2
Loading XML Columns Containing LOB Data from LOBFILEs...........c.cccccccccevivinininnnne. 35-3
Specifying LOBFILES........cccccciiiiiiiiiiceceeeieie e aeaees 35-3
Loading XMLType Data Directly from a Control File using SQL*Loader ...........cccccocuuuc... 35-3
Loading Large XML Documents into Oracle Database .............ccccooooviiiniiiiiiniciiccene 35-3
Exporting and Importing XMLType Tables
Overview of Oracle Data PUMP..........ccooooiiiiiiiiiiiiiicccceee e 36-1
EXPORT/IMPORT Support in Oracle XML DB .........ccocooiiiiiiiineeeeeneeneeeneeeenenees 36-2
Exporting XML Schema-Based XMLType Tables ...........cccccoviiiiiiiiiiiiiicccccnnnas 36-2
Exporting Hierarchy-Enabled (Repository) Tables...............cccccoooiiiiiiiiiiiiiiiiccccenas 36-3
Exporting and Importing Transportable Tablespaces ..............ccccccoceiiniiiinniiiinii 36-3
Repository Resources and Foldering Support.............cccccoiiiiniiiiinniiiicciccice 36-3

Full Database EXPOTt........cccciiiiiiiiiiiiiiiiiiiiie e 36-4



37

Exporting and Importing with Different Character Sets .........c.cccoooeiiiiiiii 36-4

Export/Import Syntax and Examples ... 36-4
Performing a Table-Mode EXport /IMPOrt ........cccoeueuriviiiiiiiiririicierreeeeeeeeeeeeeeeeeees 36-4
Performing a Schema-Mode EXport/IMport ..o 36-5

Exchanging XML Data using Oracle Streams AQ

How Do AQ and XML Complement Each Other? ..............ccoccooiiiiiiniiiiiccce 37-1
AQ and XML Message Payloads ... 37-1
Advantages of USING AQ ......ccccuiuiiiiiiiiiiiiiiiceeieieeeeteeete et seeees 37-3

Oracle Streams and AQ ..........ccoooiieiiiieiiciete ettt etee et e et e te et e seesaesseesaesseessesssesessaessesseensesssensenses 37-3
Streams Message QUEUING ..........ccueiriiiiiiiiiiieiee s 37-4

XMLType Attributes in Object Types.........ccccccoiviviiiiiiiiiiiii s 37-4

Internet Data Access Presentation (IDAP)............c.ccoiiiiiiiiiiii e 37-5

IDAP ATChitecture ........ccooviiiiiiiiiiii s 37-5
XMLType Quete Payloads.........cccccciiiiiiiiiiiiiiiiiicciciececeecie e 37-5

Guidelines for Using XML and Oracle Streams Advanced Queuing............c.cccocovvviiiiinnnnas 37-8
Storing Oracle Streams AQ XML Messages with Many PDFs as One Record?..................... 37-8
Adding New Recipients After Messages Are Enqueued ...........ccccocovvvviinnnnnnnnnnnnnene 37-8
Enqueuing and Dequeuing XML MeSSages? ...........ccceueiiurueieiiiinieieiicieieesisie e 37-8
Parsing Messages with XML Content from Oracle Streams AQ Queues............ccccceuvunnnnne. 37-9
Preventing the Listener from Stopping Until the XML Document Is Processed.................... 37-9
Using HTTPS with AQ ....coiiiiiiiiiiiiiii s 37-9
Storing XML in Oracle Streams AQ Message Payloads..........ccccooveerriiiiiiiciiiiiccicc, 37-9
Comparing iDAP and SOAP ........ccccciiiicceccee e 37-9

Part VII Appendixes

A Oracle-Supplied XML Schemas and Examples
XDBResource.xsd: XML Schema for Oracle XML DB Resources.............ccccccevviiiiiininininiinnnnnen. A-1
XDBRESOUICE.XSA ...t A-1
XDBResConfig.xsd: XML Schema for Resource Configuration .............ccccccoevvinnnnnnnnnnn A-9
XDBRESCONIIGXSA ...ttt A-9
acl.xsd: XML Schema for ACLS..........ccccooiiiiiiiiiicc s A-13
ACLXS et A-13
xdbconfig.xsd: XML Schema for Configuring Oracle XML DB...........cccccccocovviiininiinnnnnen. A-16
XADCONFIGXSA et A-16
xdiff.xsd: XML Schema for Comparing Schemas for In-Place Evolution ..................ccccccooee. A-28
XATFE XS 1. A-28
Purchase-Order XML SChemas ...........cccoviiiiiiiiiiiiiiic s A-30
XSL Style Sheet Example, PurchaseOrder.xsl............ccccccoviiiiiiiniiiiniiiiiiniicnnnccs A-38
Loading XML Data using C (OCI) ..........cccccociviiiiiiiniiiiiiccc s A-43
Initializing and Terminating an XML Context (OCI)............cccoviiiinniiiiniiiiiccce A-47
B Oracle XML DB Restrictions
Index

XXVii



List of Examples

XXViii

1-1
3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-51
3-52
3-53

Listener Status with FTP and HTTP(S) Protocol Support Enabled .............ccccoooeveiiiie. 1-10
Creating a Table with an XMLType Colum..........cccccoiiiiiiiiiiiiiiiiiieeeeeennns 3-3
Creating a Table of XMLTYPE ..o 3-3
Partitioning a Binary XML Table using Virtual Columns ..........ccccccccevniiiiinniiiininns 3-4
Creating a Database Directory ... 3-6
Inserting XML Content into an XMLType Table...........cccccoeviiiiiininiiiniiiiiiiiiiis 3-6
Inserting Content into an XMLType Table using Java.........ccccovvvvnnnninninnninnne, 3-6
Inserting Content into an XMLType Table using C..........c.ccoooriiiiniiiiiiiiiceeceece 3-7
Inserting XML Content into the Repository using CREATERESOURCE ....................... 3-10
Purchase-Order XML Schema, purchaseOrder.xsd..........cccccoeeueiiiiiinniiiiiiiiinnen, 3-14
Annotated Purchase-Order XML Schema, purchaseOrder.xsd..........ccccoevuviiivirinininnnnn 3-20
Registering an XML Schema using DBMS_XMLSCHEMA .REGISTERSCHEMA ......... 3-25
Objects Created During XML Schema Registration............c.cccccevvviiiiiniiiiiiiiinnn, 3-25
Creating an XMLType Table that Conforms to an XML Schema ............ccccccevvvivinininnnnn. 3-28
Creating an XMLType Table for Nested Collections............ccccceeueiviiiiiiniiiiiiiiiiennen, 3-29
Using DESCRIBE with an XML Schema-Based XMLType Table..........ccccccooviiiinnie. 3-29
Error From Attempting to Insert an Incorrect XML Document...........cccoeveeininiirinnnnns 3-32
Error When Inserting Incorrect XML Document (Partial Validation) ...........ccccccevvuenenn 3-32
Forcing Full XML Schema Validation using a CHECK Constraint...........ccccccoeeoreieinne. 3-33
Enforcing Full XML Schema Validation using a BEFORE INSERT Trigger ................... 3-34
Constraining a Binary XML Table using a Virtual Column............ccccocevvivniinnnnnnnnn, 3-35
Integrity Constraints and Triggers for an XMLType Table Stored Object-Relationally = 3-35
Enforcing Database Integrity When Loading XML using FTP ..........cccccccovvvninnnnn 3-36
PurchaseOrder XML Instance DOcUmMent...........coceueeuruereeenieeninennineeneeneeeneeeneeneeneneene 3-38
Retrieving an Entire XML Document using OBJECT_VALUE............cccoiiiiinnnnnne. 3-39
Accessing XML Fragments using XMLQUERY .........cccoovviiiiiiiniicecc 3-40
Accessing a Text Node Value using XMLCAST and XMLQuUETY......c.cccoevirueiiiinieieines 3-41
Searching XML Content using XMLExists, XMLCast, and XMLQuery ...........cccceeueuuve. 3-42
Finding the Reference for a Purchase Order using XMLQuery and XMLExists............ 3-45
Accessing Description Nodes using XMLTABLE ..........ccccccoviiniiiiiiii, 3-46
Counting the Number of Elements in a Collection using XMLTABLE ........................... 3-47
Counting the Number of Child Elements in an Element using XMLTABLE ................. 3-48
Creating a Relational View of XML Content .............cccecevviniiiiniiiiiniiin 3-49
Accessing Individual Members of a Collection using a View ..........cccooeiiiniiiinicieines 3-50
Querying XML Data using VIEWS ........cccccuviiiiiiiniiiiiiiccce s 3-51
Business-Intelligence Query of XML Data using a View .........cccccccociiviiicnnnininnnne, 3-52
Updating XML Content using UPDATEXML .........cccccociiiiiiiiiiiiieecceeceenes 3-53
Replacing an Entire Element using UPDATEXML........cccccccccoiiiiiiiiniiiicccee, 3-53
Incorrectly Updating a Node That Occurs Multiple Times in a Collection .................... 3-54
Correctly Updating a Node That Occurs Multiple Times in a Collection....................... 3-55
Changing Text Node Values using UPDATEXML ........ccccccceiiiinniniiiiniiicccceens 3-56
Generating XML Data using SQL /XML Functions............cccccccceeeiiiiiiniiincncnne, 3-59
Creating XMLType Views Over Conventional Relational Tables.............cccccccvuvururunnnnne. 3-60
Querying XMLTYPe VIEWS......cccviiiiiiiiiiiiiicccc e 3-61
Generating XML Data from a Relational Table using DBURIType and getXML()........ 3-63
Restricting Rows using an XPath Predicate ..., 3-64
Restricting Rows and Columns using an XPath Predicate...........c.cccccoevviiivnniinnnnne. 3-64
XSLT Style Sheet Example: PurchaseOrder.Xsl ..........cccccocvuiiiiiiiiiiiiiinciiiccicicee 3-65
Applying a Style Sheet using TRANSFORM........cccccccovuviniiiniiiininiiiiiiicncnceceeeas 3-67
Uploading Content to the Repository using FTP ..........cccccooiiiiiiiiceae 3-70
Creating a Text Document Resource using CREATERESOURCE ... 3-72
Creating Folders using PL/SQL Package DBMS_XDB........ccccccoevnninnnnnnninncnns 3-74
Accessing a Text Document in the Repository using XDBURITYPE............c.cccccocennee. 3-75
Accessing Resource Content using RESOURCE_VIEW ... 3-75



3-54
3-55
3-56
3-57
3-58
3-59
3-60
3-61
3-62
3-63
3-64
3-65
3-66
3-67

©Co~NOOCOA~AWN-—=-O0O

Accessing XML Documents using Resource and Namespace Prefixes ...........cccccceuneee. 3-75
Querying Repository Resource Data using SQL Function REF and Element XMLRef. 3-76

Selecting XML Document Fragments Based on Metadata, Path, and Content............... 3-77
Updating a Document using UPDATE and UPDATEXML on the Resource................. 3-78
Updating a Node using UPDATE and UPDATEXML.........cccoooiiiiniiniiiiinieeci 3-79
Updating XML Schema-Based Documents in the Repository ..o 3-80
Viewing RESOURCE_VIEW and PATH_VIEW Structures...........ccccooevniiiniiinienenennn, 3-82
Accessing Resources using EQUALS_PATH and RESOURCE_VIEW...........cccccceuevennne. 3-83
Determining the Path to XSL Style Sheets Stored in the Repository.........cccccovoeueieinnces 3-84
Counting Resources Under a Path ... 3-84
Listing the Folder Contents in a Path...........cooooi 3-84
Listing the Links Contained in @ FOIder ........ccooiiiiiiii 3-85
Finding Paths to Resources that Contain Purchase-Order XML Documents................. 3-85
Execution Plan Output for a Folder-Restricted QUery .........cooueveiiiiiiiiiiiiiici 3-86
Finding a Node using SQL /XML Function XMLEXIStS .........ccccoeuiiiimieiiiicieeciciee 4-4
Extracting the Scalar Value of an XML Fragment using XMLCAST.........c.ccccovniinnnna 4-5
Querying XMLTYPE Data ........coooeuiiiiiiiiiiiicice s 4-6
Querying Transient XMLTYPE Data using a PL/SQL Cursor .........cccccooeereieiiionenenninne, 4-7
Extracting XML Data using XMLTABLE, and Inserting It into a Database Table............. 4-7
Extracting XML Data and Inserting It into a Table using a PL/SQL Procedure............... 4-9
Searching XML Data using SQL /XML FUNCHONS.........ccoeveiiiimrieiicieieiee e 4-9
Extracting Fragments from an XMLTYPE Instance using XMLQUERY ............cccc....... 4-10
Updating XMLType Data using a SQL UPDATE Statement ..........c.ccccovoiiiiiiiiinicieinns 4-11
Updating XMLTYPE using UPDATE and UPDATEXML........ccccccooiiiiiiiiic 4-15
Updating Multiple Text Nodes and Attribute Values using UPDATEXML .................. 4-15
Updating Selected Nodes within a Collection using UPDATEXML ..........ccccccovvnininnnn. 4-16
NULL Updates with UPDATEXML — Element and Attribute............cccccoovnnnnnnnnns 4-18
NULL Updates with UPDATEXML — Text Node.........ccccocovvvvviniiinnnnin 4-19
XPath Expressions in UPDATEXML EXPIession ..........ccccocvviiiiiiiiiiiniiieiiicccieenens 4-21
Object Relational Equivalent of UPDATEXML EXpression..........ccccccveveiiiieveviiieienennnn, 4-21
Creating a View using UPDATEXML .........ccoooiiiiiiiii s 4-22
Inserting a Lineltem Element into a Lineltems Element...........c.ccccoooiiiiiiiiinnn, 4-24
Inserting an Element that Uses a Namespace..........ccccoiieieiiiiiiciciiceccc 4-25
Inserting a Lineltem Element Before the First Lineltem ELement ............ccccccooiniiine 4-28
Inserting a Date Element as the Last Child of an Action Element.............ccccccoooiinii 4-31
Deleting Lineltem Element Number 222...........c..ccooiiiiiiiiiiiieiiiciescee i 4-32
Creating Resources for EXamples..........ccooiiiiiiiiiiiiicc s 5-15
XMLQuery Applied to a Sequence of Items of Different Types...........cccccevvvvvnnnnnnn 5-16
FLOWR Expression using for, let, order by, where, and return...........cccccooeveveinnnnnnn. 5-17
FLOWR Expression using Built-In FUNCtions.............cooiiiiiiie, 5-18
Querying Relational Tables as XIML..........cccccooiiiiiiiiiicc 5-19
Using Relational Data in a Nested FLWOR QueTy .......cccccooiiiiieiiiiiiiiice, 5-20
Querying a Relational Table as XML using XMLTable..........cccccccooiiiiniiiiiiie 5-22
Querying an XMLType Column using XMLQuery PASSING Clause ...........ccccoceueunnees 5-23
Using XMLTABLE with XML Schema-Based Data ..........ccccoovrieiiiiiiiii 5-24
Using XMLQUERY with Schema-Based Data..........cccooviiiiiiii 5-25
Using XMLTABLE with PASSING and COLUMNS Clauses .........cccceeueirucieininenieneinnns 5-25
Decomposing XML Collection Elements into Relational Data using XMLTABLE........ 5-27
Using XMLQUERY with a Namespace Declaration..........ccccoourueieiiieiciniicieincen 5-28
Using XMLTABLE with the XMLNAMESPACES Clause........cccccocoocueiniiirinieiinicienn, 5-29
Optimization of XMLQuery over Relational Data...........cccccoueinirinieiiiniiieiiccn 5-31
Optimization of XMLTable over Relational Data ...........cccccovveviiniiiiiiiiiniici 5-32
Optimization of XMLQuery with Schema-Based XMLType Data .......c.ccccoccevviiururnnnnes 5-32
Optimization of XMLTable with Schema-Based XMLType Data.........ccccccceevvvivivnrnnnnnne. 5-33
Unoptimized Repository Query using fn:doc ..o 5-36

XXiX



XXX

5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
6-1

6-3

6-4

6-5

6-6

6-7

6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
7-1

7-2

7-3

7-4

7-5

7-6

Optimized Repository Query using EQUALS_PATH ........ccccccovvvviiiiiiiiiiiiin 5-36

Repository Query using Oracle XQuery Pragma ora:defaultTable...........c.c.cccoceeinanie. 5-37
Static Type-Checking of XQuery Expressions: oradb URI scheme .............cccccevvvrininnnns 5-37
Static Type-Checking of XQuery Expressions: Schema-Based XML.............cccccccevviennn 5-38
Using the SQL*Plus XQUERY Command........ccccceeiieiiiiiniiiiiiiiieceeeeeceennes 5-38
Using XQuery with PL/SQL......oooiiii s 5-39
Using XQuery with JDBC .......ccooiiii s 5-40
Using XQuery with ODP.INET and CH# ..o 5-41
CREATE INDEX using XMLCAST and XMLQUERY on a Singleton Element................. 6-6
CREATE INDEX using EXTRACTVALUE on a Singleton Element ...........c.ccccooeveinee. 6-6
Making Query Data Compatible with Index Data — SQL Cast ........ccccoouoiiriiniiinieiennes 6-12
Making Query Data Compatible with Index Data — XQuery Cast.........cccoceeviiiriennnnnes 6-12
Path Table Contents for Two Purchase Orders ... 6-14
Creating an XMLIndex Index on XMLType Unstructured Storage ...........cccoeevriruruennnes 6-18
Obtaining the Name of an XMLIndex Index on a Particular Table.............cccccourrnnnne. 6-18
Renaming and Dropping an XMLIndex INdeX..........ccourieiiiimieiiiiiiiiiccc 6-18
Naming the Path Table of an XMLIndex IndeX.........cccooeuviriiiniiinininiiiiiccc 6-19
Determining the System-Generated Name of an XMLIndex Path Table ........................ 6-19
Specifying Storage Options When Creating an XMLIndex IndeX ...........coooeeveiinriennnes 6-20
Dropping an XMLIndex Unstructured Component.............ccceeeveveierieciiiieeeieneennen, 6-20
Determining the Names of the Secondary Indexes of an XMLIndex Index.................... 6-20
Creating a Function-Based Index on Path-Table Column VALUE .............cccccooiiiiii. 6-21
Trying to Create a Numeric Index on Path-Table Column VALUE Directly ................. 6-21
Creating a Numeric Index on Column VALUE with Procedure createNumberIndex. 6-21
Creating a Date Index on Column VALUE with Procedure createDatelndex ............... 6-21
Creating an Oracle Text CONTEXT Index on Path-Table Column VALUE................... 6-22
Showing All Secondary Indexes on an XMLIndex Path Table ...........cccccoooiiinin 6-22
XMLIndex Index: Adding a Structured Component.............ccoeueiniiiieiniinieeiiieiee, 6-23
Dropping an XMLIndex Structured Component...........ccccoevvevvieiiiiiiiiiiiiiiiienn, 6-24
Creating a B-Tree Index on an XMLIndex Index Content Table...........ccccceerrrnnnnnnn. 6-24
Oracle Text CONTEXT Index on an XMLIndex Index Content Table................cc.c......... 6-24
XMLIndex with Only a Structured Component and using Namespaces...........cc.cc........ 6-24
Checking Whether an XMLIndex Unstructured Component Is Used..............coceueunnee. 6-26
Obtaining the Name of an XMLIndex Index from Its Path-Table Name ........................ 6-27
Extracting Data from an XML Fragment using XMLINdeX ........cccccoovorueriiiriininincneines 6-27
Using a Structured XMLIndex Component for a Query with Two Predicates .............. 6-28
Using a Structured XMLIndex Component for a Query with Multilevel Chaining...... 6-29
Turning Off XMLIndex using Optimizer Hints ...........ccoooioiiiiiiiii 6-30
XMLIndex Path Subsetting with CREATE INDEX..........cccoooiiiiiiiiiiiie 6-31
XMLIndex Path Subsetting with ALTER INDEX..........cccooiiiiiiiiiiiiiiiecei 6-32
XMLIndex Path Subsetting using a Namespace PrefixX ... 6-32
Creating an XMLIndex Index in Parallel..............ccoooiiiiiiiiiiiiic 6-34
Using Different PARALLEL Degrees for XMLIndex Internal Objects............cccccueueeee. 6-35
Specifying Deferred Synchronization for XMLINAeX.......c.cccooiriiiiiiiiiiiiiiiiccic 6-36
Manually Synchronizing an XMLIndex Index using SYNCINDEX..........c.ccccccconiiiinine. 6-36
Automatic Collection of Statistics on XMLIndex Objects ..........cccccevviiireiiniriiiiinnenennnn, 6-37
Creating an Oracle Text INdeX ........ccooiriieiiiiii 6-46
Searching XML Data using SQL Function CONTAINS..........cccooiiiiiiiiiiiiinc 6-46
Using an Oracle Text Index and an XMLIndex IndeX ...........ccooveiiiieiiiiiiiiciiiincans 6-47
XML Schema Instance purchaseOrder.Xsd ..o 7-2
purchaseOrder.xml: Document That Conforms to purchaseOrder.xsd ...........cccccoeuvuencene. 7-3
Registering an XML Schema using DBMS_XMLSCHEMA .REGISTERSCHEMA ............ 7-7
Creating SQL Object Types to Store XMLType Tables..........cccooeemeiiriiiiiiniciiice 7-9
Default Table for Global Element PurchaseOrder .............ccccooeiiriiininininiceicecc 7-10
Data Dictionary Table for Registered Schemas ............cccoveiieiinininiciiccc 7-11



-7

7-8

7-9

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26

TeE
(CEEN )
~

|
AON—=2OCQONOOOGOPA~,®

(OQOQOQOQOQOQOQOQOQOQOQO(IOQOQOQOQOQOCXJCXJCDCXJCXJCXJCXJ
ONOOOTA~AWN-—=-O

Deleting an XML Schema with DBMS_XMLSCHEMA.DELETESCHEMA ................... 7-13

Registering a Local XML Schema ..........ccccooiiiiiiiiiiieiicc s 7-14
Registering a Global XML Schema.........cccoviiiiiiiiiiiiiccc 7-15
XML Schema Defining Documents with a Title To Be Translated. ............ccccccooireiinnn. 7-18
Untranslated Instance Document ...........cooeeiiiiiiiiiniiiniicc s 7-19
XML Schema with Attribute xdb:translate for a Single-Valued Element........................ 7-20
Translated DOCUMENLt .........coiiiiiiiiiiiiii s 7-21
XML Schema with Attribute xdb:translate for a Multi-Valued Element......................... 7-22
Translated Document for an XML Schema with Multiple-Valued Elements.................. 7-24
Inserting a Document with No Language Information..........c.ccccooiiiiin, 7-25
Document After Insertion into the Repository ...........ooceeuiiceiiiiic 7-25
Inserting a Document with Language Information ..o 7-25
Document After INSEItioN.........coviuiviiiiiiiiiiiiiiciiciice s 7-26
Creating XML Schema-Based XMLType Tables and Columns ..........c.ccccovrriiininriennes 7-29
Specifying CLOB Storage for Schema-Based XMLType Tables and Columns............... 7-32
Specifying Structured Storage Options for XMLType Tables and Columns.................. 7-32
Using STORE ALL VARRAYS AS......ooiii s 7-33
Using Common Schema ANNOtations...........coceueiiirieiiiiciciccc s 7-35
Registering an Annotated XML Schema .........c.cccooooiiiiiiiic, 7-37
Querying Metadata from a Registered XML Schema.........c.cccocoueininiiininiciniciccnns 7-43
Mapping XML Schema Data Types to SQL Data Types using Attribute SQLType ...... 7-46
XPath REWTILE ....ooviiiiiiiiii s 8-2
Execution Plan Generated When XPath Rewrite Does Not Occur .........cooceviiiiinienninnen. 8-4
Analyzing an Execution Plan to Determine a Column to IndeX........cccceveiiiiiiinnicninen. 8-4
Creating an Index on a Column Targeted by a Predicate.........c.cccccoooeeiiiiiiiininne 8-5
Creating a Function-Based Index for a Column Targeted by a Predicate...............c.......... 8-5
Execution Plan Showing that Index Is Picked Up........cccoooeuiiiiiiiiiiiiiie 8-5
Creating a Function-Based Index for a Column Targeted by a Predicate...............c.......... 8-6
Execution Plan for a Selection of Collection Elements ...........ccccooviiieiiiiiciiiiie 8-6
Creating an Index for Direct Access to an Ordered Collection Table..............cccoevevnenee 8-7
Generating an XML Schema with Function GENERATESCHEMA ..o 9-2
Adding a Unique Constraint to the Parent Element of an Attribute.........c.c...cccooeeini 9-3
Setting SQLInline to False for Out-Of-Line Storage ...........cccooeeeiiiinieiiiniiccccccee 9-5
Generated XMLType Tables and Types .......c.cccouerieiiiiriciiiiciec s 9-5
Querying an Out-Of-Line Table...........cccoiiiiiiiiii s 9-6
XPath Rewrite for an Out-Of-Line Table..........cccoiiiiiiiiis 9-7
Using an Index with an Out-Of-Line Table ..........cccoooiiiiie 9-7
Storing a Collection Out 0f LiNe ..ot 9-8
Generated Out-Of-Line Collection TyPe ........ccccevirieieiiiicieicce e 9-9
Renaming an Intermediate Table of REF Values..........ccccoooiiiiiii 9-9
XPath Rewrite for an Out-Of-Line Collection...........c.ccoiieieiiiiiicc 9-9
XPath Rewrite for an Out-Of-Line Collection, with Index on REFs..........ccccccevvevvennne.. 9-10
Specifying Partitioning Information During XML Schema Registration......................... 9-11
Specifying Partitioning Information During Table Creation............cccccoeiriiiniininnes 9-12
Oracle XML DB XML Schema: Mapping complexType XML Fragments to LOBs........ 9-14
XML Schema Inheritance: complexContent as an Extension of complexTypes............. 9-15
Inheritance in XML Schema: Restrictions in complexTypes .........cccccoceeviiiiiiinrniennnen 9-16
XML Schema complexType: Mapping complexType to simpleContent......................... 9-17
XML Schema: Mapping complexType to any /anyAttribute ..o 9-18
An XML Schema with Circular Dependency ..., 9-19
XML Schema: Cycling Between compleXTypes ........cccccoeevieiiieiiiiiiiicniiecenens 9-20
XML Schema: Cycling Between complexTypes, Self-Reference............ccccoeevrvniririnnnnnes 9-21
An XML Schema that Includes a Non-Existent XML Schema..........ccccooueviiiiiiiiiniennnes 9-23
Using the FORCE Option to Register XML Schema xm40.Xsd .........cccocevviviiiiiinnnennen 9-23
Trying to Create a Table Using a Cyclic XML Schema...........cccccocuiiniiieieiiicicics 9-24

XXXi



XXXii

9-26
9-27
9-28
9-29
10-1
10-2
10-3
10-4
10-5
10-6
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
121
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-18
12-19
12-20
12-21
12-22
12-23
12-24
12-25
12-26
12-27
12-28
12-29
12-30
12-31
12-32
12-33
12-34
12-35
12-36
12-37

Using the FORCE Option to Register XML Schema xm40a.xsd .........cccooerieiiiiiiieiiinnnnes 9-24

Recursive XML Schema........cooiiiiiiiic s 9-25
Out-of-line Table ..o 9-26
Invalid Default Table Sharing ... 9-26
Revised Purchase-Order XML Schema..........ccccvueuiiiiniiiniiiiiiiiiieceeens 10-2
evolvePurchaseOrder.xsl: Style Sheet to Update Instance Documents ......................... 10-10
Loading Revised XML Schema and XSL Style Sheet..........ccccooiriiiiiiniiiniic 10-12
Updating an XML Schema using DBMS_XMLSCHEMA.COPYEVOLVE.................... 10-12
Splitting a Complex Type into Two Complex Types .......cccccovevvriiiiiniiiiine 10-16
diffXML Parameter DOCUMENt..........ccceviiiiiiiiiiiiiiiiiiic s 10-21
Registering an XML Schema and Inserting XML Data .........cccoooeuiniinieiiiiieici 11-2
Retrieving a Style Sheet using XMLTRANSFORM and DBURITYPE..............ccccoco.... 11-4
Retrieving a Style Sheet using XMLTRANSFORM and a Subquery..........cccccoounennnnne. 11-6
Using Method TRANSFORM() with a Transient Style Sheet............cccoooviiiiiiiiniii 11-6
Validating XML using Method ISSCHEMAVALID() in SQL .......ccoooiiiiiiiiiiiinicieaes 11-8
Validating XML using Method ISSCHEMAVALID() in PL/SQL. ..o 11-8
Validating XML using Method SCHEMAVALIDATE() within Triggers ..........ccc......... 11-8
Checking XML Validity using XMLISVALID within CHECK Constraints.................... 11-9
Simple Query using Oracle SQL Function CONTAINS .........ccooooiiiiiiiiiiica 12-3
Restricting a Query using CONTAINS and WITHIN ..........ccooooiiiiiiii 12-3
Restricting a Query using CONTAINS and INPATH...........cooooiiiiiiiii 12-4
ora:contains with an Arbitrarily Complex Text QUeTy ..........ccooeveiiiiiiniiiieiiiicie, 12-4
CONTAINS Query with a Simple Boolean Operator.............ccccveveieiiieiiiiieiiieeinnen, 12-6
CONTAINS Query with Complex Boolean ..o 12-6
CONTAINS Query with StemMmiNg .........ccooeiiiiiiiiii 12-6
CONTAINS Query with Complex Query EXpression............ccccveuevireieiniinieicininieienes 12-6
Simple CONTAINS Query with SCORE........cccccooiiiiiii 12-7
WITHIN ..ot 12-7
Nested WITHIIN .......oovoiiii s s 12-7
WITHIN an ATIDULE ... 12-8
WITHIN and AND: Two Words in Some Comment Section............ccccceveevireiininienennen, 12-8
WITHIN and AND: Two Words in the Same Comment ...........cccccoeeevniiiiiinennenen, 12-8
WITHIN and AND: No Parentheses............coovviiiiiniiiiiiicicccececcs 12-8
WITHIN and AND: Parentheses Illustrating Operator Precedence ...........cccccoooeuennnne. 12-9
Structure Inside Full-Text Predicate: INPATH...........cccooviiiiiiiiiiicccccen 12-9
Structure Inside Full-Text Predicate: INPATH...........cccooiiiiiiiiiiiicceen 12-9
INPATH with Complex Path EXpression (1) ..o 12-10
INPATH with Complex Path EXpression (2) .......ccccocevviviiininnininniiiiccccnnnns 12-10
Nested INPATH ..o s 12-11
Nested INPATH ReWTItN .....c.ccvvviviiiiiiiiiiiiiccc s 12-11
Simple HASPATH ......ooooiii s 12-11
HASPATH EQUALItY ...ocvviiiiei s 12-11
HASPATH with Other Operators ...........cccoeveiiiiiiiiiiiiiccc s 12-11
Scoping the Results of a CONTAINS QUETY ......ccoovruriiiiiirieiiiciec s 12-12
Projecting the Result of a CONTAINS Query using ora:contains............c.ccceeeevevernnnn 12-12
Simple CONTEXT Index on Table PURCHASE_ORDERS .........cccccccoiiiiniiiinniiiiicnns 12-13
Simple CONTEXT Index on XMLType Table with Path Section Group .............c....... 12-13
Simple CONTEXT Index on XMLType Column.........cccccovvevvviiiiiniriiiiinincans 12-13
Simple CONTEXT Index on XMLType Table..........cccccevuriiiiiiiiiiiiiiinicn 12-13
CONTAINS Query on XMLType Table .........cccooieiiiiiiiiiiiiiiciecc i 12-13
CONTAINS: Default Case Matching ..........ccoceuriiinirininiiciccc s 12-14
Create a Preference for Mixed Case ..o 12-15
CONTEXT Index on PURCHASE_ORDERS Table, Mixed Case.....c..cccevevvvvvreevvreennnen. 12-15
CONTAINS: Mixed (Exact) Case Matching...........cccocovuvivivinininnnicccns 12-15
Simple CONTEXT Index on purchase_orders Table with Path Section Group ........... 12-16



12-38
12-39
12-40
12-41
12-42
12-43
12-44
12-45
12-46
12-47
12-48
12-49
12-50
12-51
12-52
12-53
12-54
12-55
12-56
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
14-1
14-2
14-3
151
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10
1511
15-12
15-13
15-14
16-1
16-2
16-3
164
17-1
18-1
18-2
18-3
18-4

Using ora:contains with XMLQuery and XMLEXiStS ........c.cccocovruiiiiiniciiiiiciciiccian 12-18
Create a Policy to Use with ora:contains .........ccccooeoiiiiiiieiic 12-19
Finding a Stopword using 0ra:contains..........cceeeverueiiiinieieisece s 12-19
Finding a Stopword using ora:contains and Policy my_nostopwords_policy ............. 12-19
ora:contains, Default Case-Sensitivity ... 12-20
Create a Preference for Mixed Case .........ccccouiririeiiiiiiiiiiiccc e 12-20
Create a Policy with Mixed Case (Case-INSensitive) ..........ccccevvvvivviniinnnninnnninn 12-21
ora:contains, Case-SeNSItIVE (1)....ccecueiriririririeieiereetetee et sttt 12-21
ora:contains, Case-SENSITIVE (2)......cecueireririririenieriereietet ettt sttt st sttt ebe b e 12-21
ora:contains in Large Table...........cccoooiiii 12-22
B-tree Index on ID ..o 12-23
ora:contains in Large Table, with Additional Predicate..........ccccooouvirieieiiiiiiiiiin 12-23
ora:contains Search for "electric”..........coooiiiiiii 12-23
Using XQuery Pragma ora:use_text_index with ora:contains ..........c.ccccoooeeieieiicenne. 12-25
Purchase Order XML Document, po001.Xml.........cccooeviiniiiiieiiniiiiieces 12-26
Create Table PURCHASE_ORDERS .....couviiiiiiceeeeeeeeeee et e e saeee s 12-27
Create Table PURCHASE_ORDERS_XMLTYPE ......cccooiiiiiiiiicce 12-28
Create Table PURCHASE_ORDERS_XMLTYPE_TABLE .......cccoooiiiiie 12-28
Purchase-Order XML Schema for Full-Text Search Examples...........cccccevviiviiinninnnnn 12-29
Creating and Manipulating a DOM Document ...........ccccoviiiiiiiiccieicccen 13-10
Creating an Element Node and Obtaining Information About It...........c.ccccoooeiniii. 13-12
Creating a User-Defined Subtype of SYS.util_BinaryOutputStream() ...........cccccoueuene 13-15
Retrieving Node Value with a User-Defined Stream ...........cccccovviiiininiiiiniinninnns 13-15
Get-Pull of Binary Data .......c.ccoooviiiiiiiiiicicc s 13-16
Get-Pull of Character Data ...........ccouoiueiieiiieiieicicc s 13-16
Set-Pull of Binary Data.......ccccceueiiieiiiiiciicicc s 13-17
Set-Push of Binary Data ..........ccooiueiiiiiiiiiic s 13-18
Parsing an XML DOCUMENT ........cccoeviiiiiiiiiiiiiiici s 13-20
Transforming an XML Document using an XSL Style Sheet............ccccooeiiiiinnnnn 13-22
Inserting Data with Specified COlUMNS..........ccoooiiiiiiiiiii 14-2
Updating Data with Key COIUMNS.........cccoviiiiiiiii s 14-4
DBMS_XMLSTORE.DELETEXML EXample........ccccooiiiiiiiiiiicieiiicieeece i 14-5
Querying an XMLType Table using JDBC ..........cccoooiiiiiiiiiic e 15-2
Selecting XMLType Data using getStringVal() and getCLOB()........cccccooveieiiiirieieinnnne, 15-3
Returning XMLType Data using getObject() .........cooeruiireieiiiiiiiiice 15-3
Returning XMLType Data using an Output Parameter............cocoveireiiiiiiiniincienn, 15-3
Updating XMLType Data using SQL UPDATE with Constructor XMLType................ 15-4
Updating XMLType Data using SQL UPDATE with setObject() .........cccoovrueriiirrnnnnes 15-5
Retrieving Metadata about XMLType Data using JDBC ..........cccccooiiiiiiiiii 15-5
Updating an Element in an XMLType Column using JDBC.........cccccoiiiiiiiniiiiiine, 15-5
Updated Purchase-Order Document ............cceeiiiiiiiininiiniiceeeeseees 15-7
Manipulating an XMLType Column using JDBC ..........cccooouoiiiiiiiiiiicee 15-8
Java Method iNSErtXIMLL() .co.ceereruiriirienieeteeeee ettt st 15-11
Java Method getCLOB() .....cccoviimiiieiiiciciicicciicc e 15-12
Creating a DOM Object with the Java DOM APL........cccccoooiiiiiiiiiie 15-13
Using the Java DOM API with Binary XML ..o 15-21
Using OCIXMLDBINITXMLCTX() and OCIXMLDBFREEXMLCTX() ....cccceveviururiennnes 16-3
Using the C API for XML with Binary XML.........cccccooiiiiiiiniiiiccc s 16-7
Using the Oracle XML DB Pull Parser ..o 16-10
Using the DOM to Count Ordered Parts...........c.oooiiiiiiiiiiicieccc 16-15
Retrieve XMLType Data to INET ..o 17-2
XMLELEMENT: Formatting a Date ..........ccccoooiiiiiiiiice 18-5
XMLELEMENT: Generating an Element for Each Employee.........ccccoccooeiiiniiininnnes 18-6
XMLELEMENT: Generating Nested XML .........ccooooiiiiiiii 18-6
XMLELEMENT: Generating Employee Elements with Attributes ID and Name.......... 18-7

XXXxiii



XXXiV

18-5

18-6

18—7

18-8

18-9

18-10
18-11
18-12
18-13
18-14
18-15
18-16
18-17
18-18
18-19
18-20
18-21
18-22
18-23
18-24
18-25
18-26
18-27
18-28
18-29
18-30
18-31
18-32
18-33
18-34
18-35
18-36
18-37
18-38
18-39
1840
19-1

19-2

19-3

194

19-5

19-6

19-7

19-8

19-9

19-10
19-11
19-12
19-13
19-14
19-15
19-16
19-17
19-18
19-19

XMLELEMENT: Characters in Generated XML Are Not Escaped ..........ccccceeevivivnunnnne. 18-7
Creating a Schema-Based XML Document using XMLELEMENT with Namespaces.. 18-8

XMLELEMENT: Generating an Element from a User-Defined Data-Type Instance..... 18-8
XMLFOREST: Generating Elements with Attribute and Child Elements....................... 18-9
XMLFOREST: Generating an Element from a User-Defined Data-Type Instance....... 18-10
XMLCONCAT: Concatenating XMLType Instances from a Sequence............cccccouuee. 18-11
XMLCONCAT: Concatenating XML Elements ............cccooeuoiiiiiiiineeccee 18-11
XMLAGG: Generating a Department Element with Child Employee Elements ......... 18-12
XMLAGG: Using GROUP BY to Generate Multiple Department Elements................. 18-13
XMLAGG: Generating Nested Elements.............cccoooeuiiiiiiiiiiiicice 18-14
Using SQL /XML Function XMLPL.........cccccooeiiiiiiiiiiiiis 18-15
Using SQL /XML Function XMLCOMMENT ...........ccccocviiinninniiiiies 18-16
Using SQL /XML Function XMLSERIALIZE............cccoooviniiiiiiiiiiis 18-17
Using SQL /XML Function XMLPARSE.........ccccoceiviiiniiiiiiees 18-18
Using Oracle SQL Function XMLROOt..........cccccoviiiniiiiiiiiiiiiis 18-19
XMLCOLATTVAL: Generating Elements with Attribute and Child Elements........... 18-20
Using Oracle SQL Function XMLCDATA ..o 18-21
DBMS_XMLGEN: Generating Simple XML ........cccccccoviiiiiiiiiii 18-28
DBMS_XMLGEN: Generating Simple XML with Pagination (Fetch).........c.c............... 18-29
DBMS_XMLGEN: Generating XML using Object Types..........ccccceevvviniiniiiinnnnne, 18-31
DBMS_XMLGEN: Generating XML using User-Defined Data-Type Instances........... 18-32
DBMS_XMLGEN: Generating an XML Purchase Order............cccoceevvviininnnniinnnnn, 18-34
DBMS_XMLGEN: Generating a New Context Handle from a REF Cursor.................. 18-38
DBMS_XMLGEN: Specifying NULL Handling ... 18-39
DBMS_XMLGEN: Generating Recursive XML with a Hierarchical Query.................. 18-41
DBMS_XMLGEN: Binding Query Variables using SETBINDVALUEQ) .........cccceunuee. 18-43
Creating XML Data using SYS_XMLGEN .......cccccccooviiiiiiiiiiiccccs 18-46
SYS_XMLGEN: Generating an XML Element from a Database Column...................... 18-47
SYS_XMLGEN: Converting a Scalar Value to XML Element Contents...........c..ccccc.c.... 18-48
SYS_XMLGEN: Default Element Name ROW ........cccooieviirieieeeieeiereeeeeee e 18-49
Overriding the Default Element Name using SYS_XMLGEN with XMLFormat........ 18-49
SYS_XMLGEN: Converting a User-Defined Data-Type Instance to XML .................... 18-49
SYS_XMLGEN: Converting an XMLType Instance..........ccccocevvvveveriiininnininninnns 18-51
Using SYS_XMLGEN with Object VIeWs.......cccccccoviiiiiiiiiiiiiccccc 18-52
Using XMLAGG ORDER BY Clause........ccccoceiviiiiiniiiiiiiiiiciiincces 18-54
Returning a Rowset using XMLTABLE..........cccooiiiiens 18-55
Creating an XMLType View using XMLELEMENT .........ccccccccoiiiiiinniiiinen, 19-3
Creating an XMLType View using Object Types and SYS_XMLGEN ........c.ccccceevevennnn. 19-3
Registering XML Schema emp_simple.Xsd........ccccovviiiiiiiiiiiiiiciciciicccceeeenes 19-5
Creating an XMLType View using SQL/XML Publishing Functions ............cccccceevenuee. 19-6
Querying an XMLTYPe VIEW ......ccciiiiiiiiiiiiicieicicce s 19-6
Using Namespace Prefixes with SQL /XML Publishing Functions...........ccccooireiennnes 19-7
XML Schema with No Target Namespace ..........ccccocoevvviniiiiiiiiniiiiics 19-8
Creating a View for an XML Schema with No Target Namespace ..........ccccceuevviuruennnnnes 19-8
Using SQL /XML Functions in XML Schema-Based XMLType Views........ccccccceueunennn. 19-9
Creating Object Types for Schema-Based XMLType Views........cccccoovviiiiiiiiinnnnnes 19-12
Generating an XML Schema with DBMS_XMLSCHEMA .GENERATESCHEMA ...... 19-12
Registering XML Schema emp_complex.Xsd.........ccoooeuriiiiririeiiiiniciccceces 19-12
Creating XMLType View emp_Xml ........c.cccooiiiiiiiiiiiiiii s 19-14
Creating an Object View and an XMLType View on the Object View .........c.ccccoevnn. 19-14
Creating ObjJect TYPES ...t 19-14
Registering XML Schema dept_complex.Xsd ..........cccoceviviiiiiiiiiiiiii 19-15
Creating XMLType View dept_xml using Object Type dept_t.......cccccovvvvnnnnnnnnn 19-16
Creating XMLType View dept_xml using Relational Data Directly........c.ccccocovrrnnnnes 19-16
Creating an XMLType View by Restricting Rows from an XMLType Table................ 19-17



19-20
19-21
20-1
20-2
20-3
204
20-5
20-6
20-7
20-8
20-9
20-10
20-11
20-12
20-13
20-14
20-15
20-16
20-17
20-18
20-19
20-20
20-21
20-22
21-1
21-2
21-3
221
22-2
23-1
23-2
23-3
23-4
23-5
23-6
23—7
23-8
241
24-2
24-3
244
24-5
24-6
24-7
24-8
24-9
24-10
25-1
25-2
25-3
25-4
25-5
25-6
25—7
25-8

Creating an XMLType View by Transforming an XMLType Table............ccccccernrunie. 19-18

Determining Whether an XMLType View is Implicitly Updatable ..............cccccevevnce. 19-18
Using HTTPURIType PL/SQL Method GETCONTENTTYPE().......ccccccovvviniviininiiinnn 20-5
Creating and Querying a URI COIUMN.........ccooviiiiiiiiiiicc 20-7
Using Different Kinds of URI, Created in Different Ways ........ccccccceeviviiiiiiinnnnnn 20-8
Access a Repository Resource by URI using an XDBUTi ........ccccccovvviviinninninninininn, 20-10
Using PL/SQL Method GETXML() with XMLCAST and XMLQUERY .......ccccecceuee. 20-12
Targeting a Complete Table using @ DBUTi .......cccccovvviiiiniiiiiiiiiiccn 20-16
Targeting a Particular Row in a Table using a DBUTi .......c.cccooviiiiiiiiie 20-17
Targeting a Specific Column using @ DBUTi.......ccccccoviiiniiiciiiiiicccice 20-18
Targeting an Object Column with Specific Attribute Values using a DBUTri................ 20-18
Retrieve Only the Text Value of a Node using a DBUTi.........cccccoevviiiiiniiniiiiinn, 20-19
Targeting a Collection using @ DBUTi ........ccccovviviniiiiiiiiiiiici 20-19
URIFACTORY: Registering the ECOM Protocol ..o 20-21
SYS_DBURIGEN: Generating a DBUri that Targets a Column ..........cccoooeiiiiiiininnne. 20-22
Passing Columns with Single Arguments to SYS_DBURIGEN.............cccccooeviiiinnnne. 20-23
Inserting Database References using SYS_DBURIGEN ..........cccccooviiiininniniciniccnan 20-24
Creating the Travel Story Table ...........cooooiiiii e 20-24
A Function that Returns the First 20 Characters ..........cccccoeeviiiiiiiiiniie 20-24
Creating a Travel View for Use with SYS_DBURIGEN .........ccccccocviviniinininiiniinns 20-25
Retrieving a URL using SYS_DBURIGEN in RETURNING Clause...........ccccoeueiiununnee 20-25
Changing the Installation Location of DBUriServlet............coooeuoiiiiiniiciiiiicca 20-28
Restricting Servlet Access to a Database Role ..........c.cccooiiiiiii 20-28
Registering a Handler for a DBUTi PrefixX .......cccoooviiiiiniiiiiiic e 20-29
Querying PATH_VIEW to Determine Link Type .......cccccovviiiiiiiiniiicciiccceenen 21-8
Obtaining the OID Path of a ReSOUICE.........cccoeviiiiiiiiiiiiiiiiccc 21-8
Creating a Weak Link using an OID Path..........ccccoooiiiiiiiicccc 21-9
Resource Configuration File..........ccccoouiiiiiiiiiiiiiiic s 22-4
applicationData Element............cccoiiiiiiiiiiiiii s 22-5
XInclude Used in a Book Document to Include Parts and Chapters ...........cccccovvvvnenne. 23-3
Expanding Document Inclusions using XDBURITYPe .........cccooeeuviiiiiiiiiniciiicice, 23-5
Querying Document Links Mapped From XLink Links .........cccccocoviiiiiiiniininnnn, 23-8
Querying Document Links Mapped From XInclude Links .........ccccccoeviiiiiiiiiinnnnnne 23-8
Mapping XInclude Links to Hard Document Links, with OID Retrieval ..................... 23-12
Mapping XLInk Links to Weak Links, with Named-Path Retrieval............ccccccceurvenine 23-12
Configuring XInclude Document Decomposition ...........c.ccooieueieiiiicieiniiicicicci 23-12
Repository Document, Showing Generated xi:include Elements..............cccccooerrinnne. 23-13
Creating a Repository ReSoUICe..........ccoueiiiiiiiiiic e 24-4
Creating a Version-Controlled ReSOUICe..........c.cccevvviiiiiiiiiiiiiiiiiiiicc 24-5
Retrieving Resource Content by Referencing the Resource ID...........cccccoevvviviininnnnnn 24-5
Checking Out a Version-Controlled ReSource ...........cccoeveeiiiiiiininin 24-5
Updating Resource CONteNt .........cccuiviiieieiiiiiieic s 24-5
Checking In a Version-Controlled Resource............ccocouiiiiiiieiiiiiiicceceeenens 24-6
Retrieving Resource Version Content using XDBURITYPE and CREATEOIDPATH.. 24-7
Retrieving Resource Version Content using GETCONTENTSCLOBBYRESID ............. 24-7
Retrieving Resource Version Metadata using GETRESOURCEBYRESID ...................... 24-8
Canceling a Check-Out using UNCHECKOUT .........ccccocoiiiiiiiiiicic, 24-9
Determining Paths Under a Path: Relative ... 25-8
Determining Paths Under a Path: Absolute...........c.cccoooiiiiiiiniiiiiice 25-8
Determining Paths Not Under a Path..........c.ccoooiiiiiiiicc 25-9
Determining Paths using Multiple Correlations ..., 25-9
Relative Path Names for Three Levels of Resources..........ccccovivviviiinviniininininnnn, 25-10
Extracting Resource Metadata using UNDER_PATH..........cccccccoviiiiinniiiiine 25-10
Using Functions PATH and DEPTH with PATH_VIEW........cccccceoviiiinnniine 25-11
Extracting Link and Resource Information from PATH_VIEW .........ccccoooviiiinnns 25-11

XXXV



XXXVi

25-9
25-10
25-11
25-12
25-13
25-14
25-15
25-16
25-17
25-18
25-19
25-20
25-21
25-22
25-23
25-24
26-1
262
26-3
26-4
26-5
26—6
26—7
27-1
272
27-3
274
27-5
27-6
27-7
27-8
27-9
27-10
27-11
27-12
27-13
27-14
27-15
27-16
2717
27-18
27-19
27-20
27-21
28-1
28-2
28-3
284
291
29-2
29-3
29-4
29-5
29-6
29-7

All Repository Paths to a Certain Depth Under a Path ..........cccccovvvninns 25-12

Locating a Repository Path using EQUALS_PATH ........ccccoooiiiiiii 25-12
Retrieve RESID of a Given ReSOUICE.........ccccoviurieieiicicicnii s 25-12
Obtaining the Path Name of a Resource from its RESID ..........cccooeniiiiiiiiiniice 25-13
Folders Under a Given Path .........c.cooiii 25-13
Joining RESOURCE_VIEW with an XMLType Table..........ccccooriiiiiiiiiiiiii, 25-13
Deleting RESOUICES........c.coiuiieiiiicieiecte e 25-14
Deleting Links t0 RESOUICES .........coueviviiiiiiiiicic s 25-14
Deleting a Nonempty Folder..........cooiiiiii s 25-15
Updating @ RESOUICE .......ooueiiiiiiii s 25-16
Updating a Path in the PATH_VIEW ......cccccocoiiiiiniiiiis 25-17
Updating Resources Based on Attributes...........ccoooeuiiiiiiiii 25-18
Finding Resources Inside a FOIer ...........cooiimiiiiiiiiii e 25-18
COPYING RESOUICES ...ttt s 25-19
Find All Resources Containing "Paper”..........c.cccoooreiiiiiiieiiiiieec e 25-20
Find All Resources Containing "Paper" that are Under a Specified Path...................... 25-20
Managing Resources using DBMS_XDB..........c.cccooiiiiiiiiic 26-2
Using DBMS_XDB.GETACLDOCUMENT .........coooiiiiiiiiiciee i 26-4
Using DBMS_XDB.SETACL.......ooiiiiiiieiceteci s 26-4
Using DBMS_XDB.CHANGEPRIVILEGES. ..........cooooiiiiiiiic 26-5
Using DBMS_XDB.GETPRIVILEGES .........cocoooioiiiiiii i 26-6
Using DBMS_XDB.CFG_GET .......cooiiiiiiii i 26-7
Using DBMS_XDB.CFG_UPDATE........c.cccooiiiiiiir i 26-8
Simple Access Control Entry (ACE) that Grants a Privilege ............coooeiiiiiiincnnn, 27-4
Simple Access Control List (ACL) that Grants a Privilege ........ccccccoveeiiiiiinnnnnn 27-4
Element extends-frOm .........cc.couoiiiiiiiii 27-9
Element constrained-with............ccooo 27-9
Complementing a Set of Principals with Element invert.........c.cccccoovvivviniiiinnnn, 27-10
ACE with Start and End Dates...........coooouiiiiii e 27-11
Creating an ACL using CREATERESOURCE .........ccccoiiiiiiiiiiicccc s 27-11
Retrieving an ACL Document, Given its Repository Path ..........cccccccovinnnnnn 27-12
Setting the ACL of @ RE@SOUICE.......c.ooiuiuiiiiiicii 27-12
Deleting an ACL.........ooiii s 27-12
Updating (Replacing) an Access Control List........cccceuoviiiiieiiicieiiicee 27-13
Appending ACEs to an Access Control List ........cccccoevvviiiiiiniininnns 27-14
Deleting an ACE from an Access Control List..........ccooooiiiiiice 27-14
Retrieving the ACL Document for a Resource ..........ccoooiieieiiiciciiicicccce 27-14
Retrieving Privileges Granted to the Current User for a Particular Resource.............. 27-15
Checking If a User Has a Certain Privileges on a Resource ...........ccocoeueiiiiiiiniincnne, 27-15
Checking User Privileges using ACLCheckPrivileges.........c.cccooooeiiiniinieiiiiinicicne 27-16
Retrieving the Path of the ACL that Protects a Given Resource..........cccocevviiirieiinnnnnen. 27-17
Retrieving the Paths of All Resources Protected by a Given ACL ..............ccoocveeee. 27-17
ACL Referencing an LDAP USET ........ccoceueiiiiiiiiinicec s 27-21
ACL Referencing an LDAP GIOUP .....ccoccueiiiiieiiiineieci s 27-21
Navigating Oracle ASM FOIders..........ccoooueuiiiiiiiiiiiiicc s 28-11
Transferring Oracle ASM Files Between Databases with FIP proxy Method.............. 28-12
FTP Connection USING IPV6 ..ottt s 28-13
Modifying the Default Timeout Value of an FTP Session ..........ccccccoevvorieiciiicciicicicnnn 28-14
Register an XML Schema for Technical Photo Information ..........c.ccccoeevvieiiininninnnnns 29-3
Register an XML Schema for Photo Categorization ............cccccoeveeieiiiiieiniciiiciic 29-4
Add Metadata to a Resource — Technical Photo Information ............cccoiiiiii 29-5
Add Metadata to a Resource — Photo Content Categories............ccoceueieiicieiiiiiieiiiine, 29-6
Delete Specific Metadata from a ReSOUICe............ccoivvviiiiiiniiiiinnaes 29-6
Adding Metadata to a Resource using DML with RESOURCE_VIEW ............ccc..c.c...... 29-7
Adding Metadata using WebDAV PROPPATCH ..o 29-8



Query XML Schema-Based Resource Metadata..........cccooovviviiiniiiiiis 29-10

Add Non-Schema-Based Metadata to a ReSOUrce .........cocevevuenienienenieneneneieeecececen 29-11
Resource Configuration File for Java Event Listeners with Preconditions...................... 30-9
Resource Configuration File for PL/SQL Event Listeners with No Preconditions ..... 30-11
PL/SQL Code Implementing Event Listeners...........ccccoovviniviniiniiiiccnes 30-11
Java Code Implementing Event Listeners ... 30-13
Invoking Event Handlers..........c.cccoviiiiiiiiniiiiiiees 30-15
JCR Node Representation of MyFolder ..., 31-3
Code Fragment Showing How to Get a Repository Object ..........ccccevveveiiiiiiiiiiniinnnnn, 31-7
Uploading a File using Oracle XML DB Content Connector ...........ccoooeueviiieieiiinniennaes 31-8
Uploading a File Using the Command Line ..........cccooviiiiiiiiniiiieeccecnen, 31-9
XML Document with XML Schema-Based Content ............cccceceverenininenenenenenieieene 31-12
XML SCREIMA ...ttt et st b e s bt s et st et et at et ebeeb b ee 31-12
JCR Representation of XML Content Not Registered for JCR Use..........cccccevvvviririnnnnns 31-12
JCR Representation of XML Content Registered for JCR Use........c.cccccevuieriiiiiiicninenns 31-13
Registering an XML Schema for Use with Oracle XML DB ..........cccccocovnnnnnnninnnne 31-13
Registering an XML Schema for Use with JCR.......c.cccooiiiiii 31-14
An Oracle XML DB SErvIet.....c.coeiiiiiiiriiiereneeieeetete ettt ettt 32-7
Registering and Mapping an Oracle XML DB Servlet..........ccccoooiviiiiiniiice, 32-9
Adding a Web Services Configuration Servlet.............ooooooiiiiie, 33-2
Verifying Addition of Web Services Configuration Servlet ...........cccoovviiiiniinininnns 33-3
XML Schema for Database Queries To Be Processed by Web Service............ccccoucueae 33-4
Input XML Document for SQL Query using Query Web Service ...........ccoovvvvviinnininns 33-5
Output XML Document for SQL Query using Query Web Service..........cccccovviinirininnnes 33-6
Definition of PL/SQL Function Used for Web-Service AcCCeSS........covvevevreevevreeveereeneenn. 33-7
WSDL Document Corresponding to a Stored PL/SQL Function...........cccccoeeveviininnnnnen. 33-8
Input XML Document for PL/SQL Query using Web Service ..........ccooceeveirriiinrinennen 33-9
Output XML Document for PL/SQL Query using Web Service...........cccccouvvvivininiininns 33-9
Oracle XML DB Configuration File.........c.ccccccoiiiiiiiiiiiiic e 34-7
Updating the Configuration File using CFG_UPDATE and CFG_GET ........................ 34-10
Data File filelist.dat: List of XML Files t0 Load .......ccoceeevieirenirierireireeeeeeeeeeeeee e 35-4
Control File load_datra.ctl, for Loading Purchase-Order XML Documents................... 35-4
Loading XML Data Using Shell Command sqlldr..........c.cccooveniiiiiiniiiiiiene 35-4
Exporting XMLType Data in TABLE Mode.........ccoooeuoiiiiiiiiiiiecice 36-4
Importing XMLType Data in TABLE MoOde ........coooeiiiiiiiiiiiicicce 36-5
Creating Table PO2.........ciiiiii s 36-5
Exporting XMLType Data in SCHEMA Mode..........cccooiiiiiiiiiiiiiiiciei i 36-5
Importing XMLType Data in SCHEMA Mode ..o 36-5
Importing XMLType Data in SCHEMA Mode, Remapping Schema ..........ccccccevevnnnnne. 36-6
Creating a Queue Table and QUEUE..............ccccvveiiiiiiiiiiiii 37-6
Creating a Transformation to Convert Message Data to XML..........cccccooiiiiiiincnns 37-6
Applying a Transformation before Sending Messages Overseas............ccccceuvuiurueveinnnnes 37-7
XMLType and AQ: Dequeuing MeSSages...........ccocoeueueiiurieiiininnicieinincie i 37-7
Annotated Purchase-Order XML Schema, purchaseOrder.xsd..........ccccoevvviviviriiiinnennnes A-30
Revised Purchase-Order XML SChema........ccccoerierieiiiiiiinineeenesiesee ettt A-33
PurchaseOrder.xsl Style Sheet ..o A-38
Inserting XML Data into an XMLType Table using C..........cccccccovvinniinnnnnnininnnn A-43
Using OCIXmIDbInitXmlCtx() and OCIXmIDbFreeXmICtX()......cccooevvvvvrveviriniiinininiinnnns A-47

XXXVii



List of Figures

XXXViii

NS T Lo T G G G e e e

PEY

3~

— O0ONOOPA,WN=2LN=2NOOAOPAL,WN =

N
|

4-10

11-1
11-2
13-1
13-2
13-3
151
18—1
18-2
18-3
18-4
18-5
18-6
18-7

XMLType Storage and Oracle XML DB Repository ........coceueircieiiiicieieiicceiccie 1-3
XMLTYPE SEOTAZE ...ttt 1-4
Oracle XML DB Repository Architecture...........cocooeueioiiiioioiiiiieeccc e 1-9
Web Browser View of Oracle XML DB Repository ........ccccovuiireiiiiiicieiciiceecic 1-10
XML Use Cases and XMLType Storage Models............cccoouoiiiriiniiiiiecic 1-17
Oracle XML DB Benefits .........cccccovuiiiiiiiiiiiiiiiiiiiiiisssens 1-23
Unifying Data and Content: Some Common XML Architectures..........cccccoevvvivininnnnnnn. 1-24
Oracle XML DB Storage Options for XML Data.........cccccoooeueiiiiineiiiieccce e 2-6
Oracle XML DB Application Program Interface (API) Stack .........ccooovoiiiiiiiiiine, 2-10
Loading Content into the Repository using Windows Explorer ...........ccccoeeiiiiiiinine, 3-10
XMLSpy Graphical Representation of the PurchaseOrder XML Schema........................ 3-17
XMLSpy Showing Support for Oracle XML DB Schema Annotations............cccceueueeene. 3-24
Copying Files into Oracle XML DB RepoSitOry.........ccccooicueieiiiicieisiicieeceeeec 3-70
Path-Based Access using HTTP and @ URL .........cccooooiiiiiiii 3-72
Updating and Editing Content Stored in Oracle XML DB using Microsoft Word ........ 3-78
Database XSL Transformation of a PurchaseOrder using DBUri Servlet....................... 3-89
Database XSL Transformation of Departments Table using DBUri Servlet.................... 3-90
XMLEXIStS SYNEAX ..vvevivieieiiieieieieieiee s 4-3
XMLCASt SYNEAX....cociiiiiiiiiieiiiei s 4-4
UPDATEXML SYNEAX ....curviiriiiciiciici it 4-15
INSERTCHILDXML SYNAX ...ocuviiiiiiieiiieicieiecieiscciiei i 4-24
INSERTCHILDXMLBEFORE SYNtaX......cccovuiiuriiiniiieiieinicisicisic e 4-26
INSERTCHILDXMLAFTER SYNtaX ...ocvuvuriiieiiieiiiciiieiieieicis s 4-27
INSERTXMLBEFORE SYNEaX.....coouiiuriiiiiiirinicieicisicie s 4-28
INSERTXMLAFTER SYNEAX ...ucuviiiiiiieiiiicieiecieieie et 4-30
APPENDCHILDXML SYNEAX......ouriiiriiiriiinininieinieicie i 4-31
DELETEXML SYNEAX c..oovuviiiiiiciiiiecicie it 4-32
XMLQUERY SYNEAX...0viuriiiteiiieiiieisiicisiieisiei st cae s 5-6
XMLTABLE SYNAX.....oiiiiiiiiiiiiiniiieicie st 5-7
XML Use Cases and XML INA@XING ........c.oovrmiiiiiiiieieiiccie i 6-10
Creating an XMLType Table - CREATE TABLE .........ccocooiiiiiniiiniiccccie 7-28
Creating an XMLType Table - XMLType_table...........ccccoooiiiiiiiiiiecc 7-28
Creating an XMLType Table — table_properties ............cccocoeeuoireieioiicieieiccecccis 7-28
Creating an XMLType Table - XMLType_virtual_columns ...........cccccccoueiiriiniiincninnes 7-29
How Oracle XML DB Maps XML Schema-Based XMLType Tables...........cccccccoevueunnnes 7-45
Mapping simpleType: XML Strings to SQL VARCHAR2 or CLOB..........ccoooviiniininnes 7-49
Mapping complexType to SQL for Out-Of-Line Storage.........ccceoevvvvrerrinicneininicceenen 9-4
Mapping complexType XML Fragments to Character Large Objects (CLOB) .............. 9-15
Cross Referencing Between Different complexTypes in the Same XML Schema........... 9-20
Self-Referencing Complex Type within an XML Schema..........ccccccceiiiiiiiinininnnen 9-22
Cyclical References Between XML Schemas...........cccoouviriiniicieicciciccceccene 9-22
XMLTRANSFORM SYNEAX c..ouvuviriiiiciiiciinciicisicisisces s sessssasns 11-2
Using XMLTRANSFORM.........ccoiiiiiiiiiiiiciiciscieicis s 11-2
Using the PL/SQL DOM API for XMLTYPE......cccccevvvviiiiiiiiiiinirssiiscceseecaes 13-10
Using the PL/SQL Parser API for XMLTYPE ......ccccovivvirininniiiinicicinncciencecaes 13-20
Using the PL/SQL XSLT Processor for XMLType......cccccovuvvvnivinniiiiiniccninccecaes 13-22
Using the Java DOM API for XMLTYPE ... 15-16
XMLELEMENT SYNEAX «.oviriiiiiiiiiiiciiiciiciciciscis s ssss 18-3
XMLAttributes Clause Syntax (XMLATTRIBUTES) ........ccccouoeiiiiiiiiiinicsceicceicines 18-4
XMLFOREST SYNEAX......cuiiiiuriiiiiiiiiiicisiciicisscisssisssse s ssss s 18-9
XMLCONCAT SYNEAX...viiiiiiiiiiiicieisisisie st 18-11
XMLAGG SYNEAX wvoviiviiiiiiiiiii it 18-12
XMLPL SYINEAX ....viviiiiiitiiiiiicci st 18-15
XMLCoMMENt SYNEAX ...eiiiiiiiviiiiiicic e 18-16



18-8
18-9
18-10
18-11
18-12
18-13
18-14
18-15
19-1
20-1
20-2
211
21-2
21-3

21-4
25-1
25-2
25-3
25-4
25-5
25-6
28-1
28-2
371
37-2

XMLSerialize SYNtaX......cccoiviiiiiiiiiiiiiiiiiiic s 18-16

XMLPAISE SYNEAX ..vvvviiiiiiiiiii e 18-18
XMLROOt SYNEAX c.vviiiiiiciiiicicicc s 18-19
XMLCOLATTVAL SYNEAX...ciiiiiiiiiiiiiiiiiiiii s caesssenssssnes 18-19
XMLCDATA SYNEAX ....oiiiiiiiiiiiiiiiii s s s s senes 18-21
Using PL/SQL Package DBMS_XMLGEN .........ccccocovnniniiiniiiinnnnas 18-22
SYS_XMLGEN SYNEaX ..ot 18-46
SYS_XMLAGG SYNAX ..ooviviviiiiiiiiiiiiiicieiciciccc s 18-54
Creating XMLType Views Clause: SyntaX .........cccooeeueiiiinieieiiiicicsici s 19-2
A DBUri Corresponds to an XML Visualization of Relational Data ............cccccovviunie. 20-13
SYS_DBURIGEN SYNEAX ..ocvviriiiiiiiieiiieieiiteiniercsseesess s 20-22
A Folder Tree, Showing Hierarchical Structures in the Repository .........ccccccooereieiincie. 21-2
Oracle XML DB Folders in Windows EXPlOTer ...........ccccoviiiiiiniiiiicice 21-10

Accessing Repository Data using HTTP(S)/WebDAV and Navigational Access From IE
Browser: Viewing Web Folders 21-10

Oracle ASM Virtual Folder Hierarchy ...........ccoceoiiiiiiiiiciccca 21-13
Accessing Repository Resources using RESOURCE_VIEW and PATH_VIEW ............. 25-2
RESOURCE_VIEW and PATH_VIEW SEtIUCEULE ....ccvvvieeeieieeeeeeee e 25-4
RESOURCE_VIEW and PATH_VIEW Explained..........ccccccooviiiiiniiiicicccccn 25-5
UNDER_PATH SYNEAX ...ououiieiiiiieieisiiciee et 25-6
EQUALS_PATH SYNaX.....ooeueiiiirieisiiinieieiici ettt 25-7
PATH SYNEAX covviiiieieiecie ettt bbbt 25-8
Oracle XML DB Architecture: Protocol SEIver ... 28-2
Creating a WebFolder in Microsoft Windows...........cccovviiiiiicciccccnnes 28-22
Oracle Streams Advanced Queuing and XML Message Payloads...........ccccoocueveiiurinnnes 37-3
iDAP Architecture for Performing AQ Operations using HTTP(S) ........ccoocueviiiniennnnns 37-5

XXXiX



xl



List of Tables

1-1
1-2
1-3
3-1
4-1
5-1
5-2
61
62
6-3

7-10

10-1
10-2
10-3
104
10-5
10-6
13-1
15-1
16-1
162
18-1
18-2
20-1
20-2
20-3
21-1
21-2
21-3
241
242
25-1
25-2
25-3
26-1
262
26-3
27-1

APIs Related to XML ......ccooiiiiiiiiiiiiiiiec s 1-5
Catalog Views Related to XML........cccccooviiiiiiiiiiiiiiiic s 1-6
XMLType Storage Models: Relative Advantages ............cccoooeuevoiiriiiniinciciicccee, 1-18
SQL*Loader — Conventional and Direct-Path Load Modes.........c.ccccevenevieinnnenincncnenne. 3-9
Common XPath CONSLIUCES .......couiviviiiiiieiiiiiiicc s 4-2
Predefined Namespaces and Prefixes...........ccccoviiiiiiiiiiiciii, 5-10
oradb Expressions: Column Types for Comparisons .........c.cocoevvvviviiiiiiiincnincnnnennen, 5-11
Basic XML Indexing Tasks.........cccccoceueiiiiiiiiiiiicie s 6-2
Tasks Involving XMLIndex Indexes with a Structured Component ..............ccceueeeen. 6-2
Tasks Involving XMLIndex Indexes with an Unstructured Component......................... 6-2
Miscellaneous Tasks Involving XMLIndex Indexes ...........cccccoveveiiiniiiiiiiciicennen, 6-3
XML and SQL Data Type Correspondence for XMLINdeX........cccccocovivivinninninininiinnnn. 6-12
XMLIndex Path Table..........ccccoiiiiiiiiiiiiiicc e 6-14
Index SYyNChIroniZation ... 6-36
XMLIndex Static Public VIEWS........cccccvviiiiiiiiiiiiiii e 6-37
XMLType Methods Related to XML Schema ...........ccccouiiioiiiniciii i, 7-14
CREATE TABLE Encoding Options for Binary XML..........ccccccoovinnnnnnnne, 7-31
Annotations in EIemMents...........ccccoviiiiiiiinic 7-39
Annotations in Elements Declaring Global complexType Elements ................cccc......... 7-41
Annotations in XML Schema Declarations ...........cccccoeeiiiiiiiiiiiiiicceceeeenas 7-41
Mapping XML Schema String Data Types to SQL.........cooooiiiiiiiiiiiiie, 7-49
Mapping XML Schema Binary Data Types (hexBinary/base64Binary) to SQL............ 7-49
Default Mapping of Numeric XML Schema Primitive Types to SQL..........ccccceevnennee. 7-49
Mapping XML Schema Date and Time Data Types to SQL .........c.ccccoorriiiiiniininnnnn, 7-50
Default Mapping of Other XML Schema Primitive and Derived Data Types to SQL.. 7-50
Sample of XPath Expressions that Are Rewritten to Underlying SQL Constructs.......... 8-2
Parameters of Procedure DBMS_XMLSCHEMA.COPYEVOLVE.........cocooviiviiveiinenns 10-6
Errors Associated with Procedure DBMS_XMLSCHEMA.COPYEVOLVE................... 10-6
XML Schema Evolution: XMLType Table Temporary Table Columns..............ccc....... 10-14
XML Schema Evolution: XMLType Column Temporary Table Columns ................... 10-14
Procedure copyEvolve Mapping Table ...........ccccovviiiiiininie, 10-14
Parameters of Procedure DBMS_XMLSCHEMA.INPLACEEVOLVE..........ccccceuvven. 10-19
XML and HTML DOM Node Types and Their Child Node Types .........ccccccceuvvererininnnns 13-8
Java DOM API for XMLType: CIASSES............cccvuviiiiiiiiiiiieiiiciiiiieicceeeeeeeeennas 15-14
OCIXmIDDbINitXMICtX() Parameters.........cocceeeererenienienieieieeeiesieeiesie et 16-3
Common XMLType Operations in C..........ccccveiiiiiniiiiienceeeeeeeenes 16-15
DBMS_XMLGEN Functions and Procedures ...........oouevvevevoveeeiecieeeeeeeeeeeeeeeeeeeeee s 18-24
Attributes of the XMLFormat ObjJect ..........cccocevviniiiiininiiiiiiiii, 18-48
URIType PL/SQL Methods.........ccccoviiiiiiiiiiiiiiiiiciii e 20-4
URIFACTORY PL/SQL Methods.......ccccccoiiiiiiniiiiiiiiiiiiii, 20-20
DBUriServlet: Optional Arguments............ccooeueueiiiiieiiiicicec e 20-27
Synonyms for Oracle XML DB Repository Terms ............ccoooeeueiiinieininiicieiicieee 21-4
Differences Between PATH_VIEW and RESOURCE_VIEW .....cccccoovviiiviiiiiieeeceeenns 21-14
Accessing Oracle XML DB Repository: APT Options ..........ccceevviviiiiiiiiiiinninninne, 21-15
Oracle XML DB Versioning Terms...........cccocoeueieiiinieiiinieieceie e 24-2
PL/SQL Functions and Procedures in Package DBMS_XDB_VERSION...................... 24-10
Structure of RESOURCE_VIEW ..ottt ettt st 25-3
Structure Of PATH_VIEW.......ooiiiiiiiii ettt sttt sttt sasesaae s 25-3
UNDER_PATH SQL Function Signature .........cccccocoviiiiiiiiiiiiccccccceenens 25-6
DBMS_XDB Resource Management Functions and Procedures .............ccccocovvviviniinnen. 26-2
DBMS_XDB: Security Management Procedures and Functions...........cccccooovviiniennen. 26-3
DBMS_XDB: Configuration Management Functions and Procedures ............c..c........... 26-7
Database Privileges Needed for Operations on Oracle XML DB Resources.................. 27-4

xli



xlii

272
27-3
28-1
28-2
28-3

30-1
30-2
31-1
31-2
32-1
322
33-1
34-1
36-1

AtOMIC PriVIIEZES ... 27-5

Aggregate Privileges ... 27-6
Common Protocol Configuration Parameters ............c.coeeueueviiciiiiiiicecciee, 28-3
Configuration Parameters Specific to FTP .......cccooooiiiiiiiiii e, 28-4
Configuration Parameters Specific to HITTP(S)/WebDAYV (Except Servlet Parameters)........
28-5
Predefined Repository EVeNts..........coiiiiiiiiiii 30-3
Oracle XML DB Repository Operations and Events.........c.ccccoeeiiiiniiiiiiininiiinns 30-5
Oracle XML DB Resource to JCR Mappings........c.ccceoveevviniiinieiininieciiincecsnn, 31-5
XML Schema Built-In Types Mapped to JCR Property Value Types........cccccevevneene. 31-14
XML Elements Defined for Servlet Deployment Descriptors ...........cccocovvvivinininiiininincnen. 32-3
Java Servlet 2.2 Methods that Are Not Implemented............ccccooiiiiiiiiiin 32-7
Web Service Mapping Between XML and SQL Data Types.........ccccoevvvviiiinniininennne. 33-7
DBMS_XDB_ADMIN Management Procedures.............cccocoevivviiinnnnnninnninnnine, 34-13

Format of the XMLType columns in the table with the corresponding format of the dump
file 36-2



Audience

Preface

This manual describes Oracle XML DB, and how you can use it to store, generate,
manipulate, manage, and query XML data in the database.

After introducing you to the heart of Oracle XML DB, namely the XMLType
framework and Oracle XML DB Repository, the manual provides a brief introduction
to design criteria to consider when planning your Oracle XML DB application. It
provides examples of how and where you can use Oracle XML DB.

The manual then describes ways you can store and retrieve XML data using Oracle
XML DB, APIs for manipulating XMLType data, and ways you can view, generate,
transform, and search on existing XML data. The remainder of the manual discusses
how to use Oracle XML DB Repository, including versioning and security, how to
access and manipulate repository resources using protocols, SQL, PL/SQL, or Java,
and how to manage your Oracle XML DB application using Oracle Enterprise
Manager. It also introduces you to XML messaging and Oracle Streams Advanced
Queuing XMLType support.

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

Oracle XML DB Developer's Guide is intended for developers building XML Oracle
Database applications.

An understanding of XML, XML Schema, XQuery, XPath, and XSL is helpful when
using this manual.

Many examples provided here are in SQL, PL/SQL, Java, or C. A working knowledge
of one of these languages is presumed.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

xliii



Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see these Oracle resources:

»  Oracle Database New Features Guide for information about the differences between
Oracle Database 11g and the Oracle Database 11g Enterprise Edition and the
available features and options. This book also describes features new to Oracle
Database 11¢ Release 2 (11.2).

»  Oracle Database XML Java API Reference
»  Oracle XML Developer’s Kit Programmer’s Guide

»  Oracle Database Error Messages. Oracle Database error message documentation is
available only as HTML. If you have access to only printed or PDF Oracle
Database documentation, you can browse the error messages by range. Once you
find the specific range, use the search (find) function of your Web browser to
locate the specific message. When connected to the Internet, you can search for a
specific error message using the error message search feature of the Oracle
Database online documentation.

»  Oracle Text Application Developer’s Guide

»  Oracle Text Reference

»  Oracle Database Concepts.

»  Oracle Database Java Developer’s Guide

»  Oracle Database Advanced Application Developer’s Guide
»  Oracle Streams Advanced Queuing User's Guide

»  Oracle Database PL/SQL Packages and Types Reference

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information about how these
schemas were created and how you can use them yourself.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technetwork/community/join/overview/index.html

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technetwork/indexes/documentation/

For additional information, see:
» http://www.w3.org/TR/xml/ - XML (language)
m http://www.xml.com/pub/a/98/10/guide0l.html — XML introduction

xliv



m http://www.
m http://www.
m http://www.
m http://www.
m http://www.
m http://www.
m http://www.
Schema
s http://xml
m http://www.
m http://www.
m http://www.
m http://www.
XPath

w3 .org/XML/Schema — XML Schema

w3 .0rg/2001/XMLSchema — XML Schema

w3 .org/TR/xmlschema-0/ — XML Schema: primer

w3 .org/TR/xmlschema-1/ — XML Schema: structures

w3 .org/TR/xmlschema-2/ — XML Schema: data types
oasis-open.org/cover/schemas.html — XML Schema

xml.com/pub/a/2000/11/29/schemas/partl.html — XML

.coverpages.org/xmlMediaMIME. html — media/MIME types

w3 .org/TR/xptr/ — XPointer
w3 .org/TR/xpath — XPath 1.0
w3 .org/TR/xpath20/ — XPath 2.0

zvon.org/xxl/XPathTutorial /General/examples.html —

s XML In a Nutshell, by Elliotte Rusty Harold and W. Scott Means, O'Reilly, January
2001, http://www.oreilly.com/catalog/xmlnut/chapter/ch09.html

m http://www.w3.org/TR/2002/NOTE-unicode-xml-20020218/ — Unicode

in XML
m http://www.
m http://www.
m http://www.
m http://www.
m http://www.
m http://www.
m http://www.
m http://www.
m http://www.

Specification

w3 .org/TR/xml-names/ — XML namespaces

w3 .org/TR/xml-infoset/ — information sets

w3 .org/DOM/ — Document Object Model (DOM)

w3 .org/TR/xslt — XSLT

w3 .org/TR/xsl — XSL
oasis-open.org/cover/xsl.html — XSL
zvon.org/xx1l/XSLTutorial/Output/index.html — XSL
w3 .0rg/2002/ws/Activity.html — Web services

ietf.org/rfc/rfc959. txt — RFC 959: FTP Protocol

s ISO/IEC 13249-2:2000, Information technology - Database languages - SQL
Multimedia and Application Packages - Part 2: Full-Text, International
Organization For Standardization, 2000

s http://java.sun.com/xml/tutorial_intro.html — XML and Java

Note:

Throughout this manual, "XML Schema" refers to the XML

Schema 1.0 recommendation, http: //www.w3 .org/XML/Schema.

Conventions

The following text conventions are used in this document:

xlv



Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Code Examples

xlvi

The code examples in this book are for illustration only. In many cases, however, you
can copy and paste parts of examples and run them in your environment.

Standard Database Schemas

Many of the examples in this book use the standard database schemas that are
included in your database. In particular, database schema OE contains XML
purchase-order documents in XMLType table purchaseorder, and XML documents
with warehouse information in XMLType column warehouse_spec of table
warehouses.

The purchase-order documents are also contained in Oracle XML DB Repository,
under the repository path /home/OE/PurchaseOrders/2002/. The XML schema
that governs these documents is file purchaseorder .xsd, at repository location
/home/OE/purchaseorder.xsd. An XSL style sheet that is used in some examples
to transform purchase-order documents is file purchaseorder . xs1, at repository
location /home/OE/purchaseorder.xsl. This XML schema and style sheet can also
be found in Appendix A, "Oracle-Supplied XML Schemas and Examples".

See Also:

»  Oracle Database Sample Schemas for information about database
schema HR

»  Oracle Database Sample Schemas for information about database
schema OE

Pretty Printing of XML Data

To promote readability, especially of lengthy or complex XML data, output is
sometimes shown pretty-printed (formatted) in code examples.

Execution Plans

Some of the code examples in this book present execution plans. These are for
illustration only. Running examples that are presented here in your environment is
likely to result in different execution plans from those presented here.

Reminder About Case Sensitivity
When examining the examples in this book, keep in mind the following:

s SQL is case-insensitive, but names in SQL code are implicitly uppercase, unless
you enclose them in double-quotes.

s XML is case-sensitive. You must refer to SQL names in XML code using the correct
case: uppercase SQL names must be written as uppercase.



For example, if you create a table named my_table in SQL without using
double-quotes, then you must refer to it in XML code as "MY_TABLE".

Syntax Descriptions

Syntax descriptions are provided in this book for various SQL, PL/SQL, or other
command-line constructs in graphic form or Backus Naur Form (BNF). See Oracle
Database SQL Language Reference for information about how to interpret these
descriptions.

xlvii



xlviii



What's New in Oracle XML DB?

This chapter describes the new features and functionality, enhancements, APIs, and
product integration support added to Oracle XML DB for Oracle Database 11g.

It also describes the deprecation of certain Oracle XML DB constructs.

Oracle Database 11g Release 2 (11.2.0.3) Deprecated Oracle XML DB
Constructs

The following Oracle XML DB constructs are deprecated in Oracle Database 11g Release
2 (11.2.0.3). They are still supported in 11.2.0.3 for backward compatibility, but Oracle
recommends that you do not use them in new applications.

s PL/SQL procedure DBMS_XDB_ADMIN. createRepositoryXMLIndex
= PL/SQL procedure DBMS_XDB_ADMIN . XMLIndexAddPath

= PL/SQL procedure DBMS_XDB_ADMIN . XMLIndexRemovePath

s PL/SQL procedure DBMS_XDB_ADMIN. dropRepositoryXMLIndex

s XML schema annotation (attribute) csx: encodingType

= XMLIndex index on CLOB portions of hybrid XML Type storage, that is, on CLOB
data that is embedded within object-relational storage

Oracle Database 11g Release 2 (11.2.0.3) Other Changes in Oracle
XML DB

The following PL/SQL procedures have been moved from package DBMS_XDB to
package DBMS_XDB_ADMIN in Oracle Database 11g Release 2 (11.2.0.3):

s moveXDB_tablespace

s rebuildHierarchicalIndex

Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle
XML DB

The following Oracle XML DB features are new in Oracle Database 11g Release 2
(11.2.0.2).

xlix



Default Storage Model for XMLType

The default XMLType storage model is used if you do not specify a storage model
when you create an XMLType table or column. Prior to Oracle Database 11g Release 2
(11.2.0.2), unstructured (CLOB) storage was used by default. The default storage model
is now binary XML storage.

Note: You can create a new table that uses binary XML storage and
populate it with existing XMLType data that is stored using CLOB
storage. Use CREATE TABLE AS SELECT.., selecting from the
existing data.

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

Default LOB Storage for Binary XML

XMLType data that uses the binary XML storage model is stored internally using large
objects (LOBs). Prior to Oracle Database 11g Release 2 (11.2.0.2), binary XML data was
stored by default using the BasicFile LOB storage option. By default, LOB storage for
binary XML data now uses the SecureFile LOB storage option whenever possible.

If SecureFile LOB storage is not possible then the default behavior uses BasicFile LOB
storage. This can occur if either of the following is true:

»  The tablespace for the XML Type table does not use automatic segment space
management.

= A setting in file init . ora prevents SecureFile LOB storage. For example, see
parameter DB_SECUREFILE.

See Also:

n  Oracle Database Administrator’s Guide for information about
automatic segment space management

»  Oracle Database Reference for information about parameter DB_
SECUREFILE

s "Oracle Database 11g Release 2 (11.2.0.2) Deprecated Oracle
XML DB Constructs" on page -li

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

XQuery Pragma ora:defaultTable for Repository Query Performance

Previously, to obtain optimal performance for XQuery expressions that use fn:doc
and fn:collection over Oracle XML DB Repository resources, you needed to carry
out explicit joins with RESOURCE_VIEW. The new XQuery extension-expression
pragma ora:defaultTable now performs the necessary joins automatically.

This functionality is available starting with Oracle Database 11g Release 2 (11.2.0.2).

XML Diagnosability Mode: SQL*Plus System Variable XMLOptimizationCheck
You can use the SQL*Plus SET command with the new system variable
XMLOptimizationCheck to turn on an XML diagnosability mode for SQL. When
this mode is on, execution plans are automatically checked for XPath rewrite, and if a
plan is suboptimal then an error is raised and diagnostic information is written to the
trace file indicating which operators are not rewritten.

This functionality is available starting with Oracle Database 11¢ Release 2 (11.2.0.2).



See Also: "Diagnosing XQuery Optimization:
XMLOptimizationCheck" on page 5-35

Oracle Database 11g Release 2 (11.2.0.2) Deprecated Oracle XML DB

Constructs

The following Oracle XML DB constructs are deprecated in Oracle Database 11¢ Release
2 (11.2.0.2). They are still supported in 11.2.0.2 for backward compatibility, but Oracle
recommends that you do not use them in new applications.

= XMLType data stored as binary XML using BasicFile LOB storage. See also the new
feature "Default LOB Storage for Binary XML" on page -1.

s Oracle XQuery function ora:view — Use XQuery functions fn:doc and
fn:collection instead. See Chapter 5, "Using XQuery with Oracle XML DB".

Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle

XML DB

The following Oracle XML DB features are new in Oracle Database 11¢ Release 2
(11.2.0.1).

Partitioning XMLType Tables and Columns

For XMLType data stored object-relationally, when you partition a base XMLType table
or a base table with an XMLType column, any collection tables that use heap-based
table storage are now, by default, automatically equipartitioned also. Equipartitioning
means that there is a corresponding collection-table partition for each partition of the
base table. A child element is stored in the collection-table partition that corresponds
to the base-table partition of its parent element.

See Also: "Partitioning XMLType Tables and Columns Stored
Object-Relationally” on page 9-10

Access Control Enhancements

Access control lists (ACLs) have been enhanced in various ways, to provide
fine-grained access control that you can customize. You can define your own
privileges and associate them with users and roles in flexible ways. Inheritance is
available for ACLs. Access control entries (ACEs) can stipulate start and end dates.
You can control access for application users and roles that are not necessarily the same
as database users and roles.

See Also: Chapter 27, "Repository Access Control"

Repository Read and Write Performance Enhancements

Performance has been improved for Oracle XML DB Repository read and write
operations.

Binary XML Performance Enhancements and Partitioning

The performance of queries and DML operations on binary XML tables has been
improved, and you can now partition binary XML tables, using a virtual column as the
partitioning key.



XMLIndex Enhancements

You can use XMLIndex to index islands of structured XML content embedded in
content that is generally unstructured. An XMLIndex index can thus index both
structured and unstructured XML content.

You can create a local XMLIndex index on data in partitioned XMLType tables.

See Also: "XMLIndex" on page 6-7

Cost-Based XPath Rewrite

You can use a new optimizer hint to request cost-based optimization of XQuery
expressions.

Oracle Database 11g Release 2 (11.2.0.1) Deprecated Oracle XML DB

Constructs

The following Oracle XML DB constructs are deprecated in Oracle Database 11g Release
2 (11.2.0.1). They are still supported in 11.2.0.1 for backward compatibility, but Oracle
recommends that you do not use them in new applications.

s Oracle SQL function extract — Use SQL/XML function XMLQuery instead. See
"XMLQUERY SQL/XML Function in Oracle XML DB" on page 5-6.

s Oracle SQL function extractvValue — Use SQL/XML function XMLTable or
SQL /XML functions XMLCast and XMLQuery instead.

- See "SQL/XML Functions XMLQUERY and XMLTABLE" on page 5-5 for
information about using function XML Table

- See "XMLCAST SQL/XML Function" on page 4-4 for information about using
functions XMLCast and XMLQuery

s Oracle SQL function existsNode — Use SQL /XML function XMLExists instead.
See "XMLEXISTS SQL /XML Function" on page 4-3.

s Oracle SQL function XMLSequence — Use SQL /XML function XMLTable instead.
See "XMLTABLE SQL /XML Function in Oracle XML DB" on page 5-7.

s Oracle XPath function ora: instanceof — Use XQuery operator instance of
instead.

s Oracle XPath function ora: instanceof-only — Use XML Schema attribute
xsi:type instead.

s PL/SQL XMLType methods getStringval (), getCLOBVal (), and
getBLOBVal (), — Use SQL/XML function XMLSerialize instead. See
"XMLSERIALIZE SQL /XML Function" on page 18-16.

» PL/SQL XMLType method getNamespace () — Use XQuery function
fn:namespace-uri instead.

= PL/SQL XMLType method getRootElement () — Use XQuery function
fn:local-name instead.

s Function-based indexes on XMLType — Use XML Index with a structured
component instead. See "Function-Based Indexes" on page 6-5.



Oracle Database 11g Release 1 (11.1) New Features in Oracle XML DB

Binary XML

Binary XML is a new storage model for abstract data type XMLType, joining the
existing storage models of structured (object-relational) and unstructured (CLOB)
storage. Binary XML is XML-Schema aware, but it can also be used with XML data
that is not based on an XML schema. See "XMLType Storage Models" on page 1-14.

See Also:

»  Oracle Database Advanced Application Developer’s Guide for an
overview of XML Type data stored as binary XML

»  Oracle Database SQL Language Reference for information about
creating XMLType tables and columns stored as binary XML

»  Oracle Database XML Java API Reference for information about
manipulating binary XML data using Java

»  Oracle Database XML C API Reference for information about
manipulating binary XML data using C

XMLIndex

A new index type is provided for XMLType: XMLIndex. This can greatly improve the
performance of XPath-based predicates and fragment extraction for XMLType data,
whether based on an XML schema or not. The new index type is a (logical) domain
index that consists of underlying physical tables and secondary indexes. See

Chapter 6, "Indexing XMLType Data".

Note: The CTXSYS.CTXXPath index is deprecated in Oracle Database
11g Release 1 (11.1). The functionality that was provided by
CTXXPath is now provided by XMLIndex.

Oracle recommends that you replace CTXXPath indexes with
XMLIndex indexes. The intention is that CTXXPath will no longer be
supported in a future release of the database.

See Also:

»  Oracle Database Reference for information about new view XIDX_
USER_PENDING

»  Oracle Database PL/SQL Packages and Types Reference for
information about new PL/SQL package DBMS_XMLINDEX

XMLType OCTs Now Use Heap Storage Instead of I0Ts

You can store collections of XML elements as ordered collection tables (OCTs). OCTs
now use heap storage, by default. In prior releases, OCTs were index-organized tables
(IOTs), by default. A new XML schema registration option, REGISTER_NT_AS_TIOT,
forces the use of IOTs.

See Also: "Controlling How Collections Are Stored for
Object-Relational XMLType Storage" on page 3-19



liv

Default Value of XML Schema Annotation storeVarrayAsTable Is Now true

In prior releases, the default value of XML schema annotation storeVarrayAsTable
was false; the default value is now true. This means that by default an XML
collection is stored as a set of rows in an ordered collection table (OCT). Each row
corresponds to an element in the collection. With annotation storevVarrayAsTable
= "false", the entire collection is instead serialized as a varray and stored in a LOB
column.

Using storevVarrayAsTable = "true" facilitates the efficient use of collections:
queries, updates, and creation of B-tree indexes.

See Also: "Controlling How Collections Are Stored for
Object-Relational XMLType Storage" on page 3-19 for more
information about storing XML collections object-relationally

Repository Events

Applications can now register listeners with handlers for events associated with
Oracle XML DB Repository operations such as creating, deleting, and updating a
resource. See Chapter 30, "Oracle XML DB Repository Events".

See Also:
»  Oracle Database XML Java API Reference for new Java methods

»  Oracle Database PL/SQL Packages and Types Reference for
information about new PL/SQL package DBMS_XEVENT

»  Oracle Database PL/SQL Packages and Types Reference for
information about new PL/SQL package DBMS_RESCONFIG

»  Oracle Database PL/SQL Packages and Types Reference for
information about new PL/SQL package DBMS_XDBRESOURCE

Support for Content Repository API for Java (JCR: JSR-170)

Oracle XML DB now supports Content Repository API for Java (JCR) and the JSR-170
standard. You can access Oracle XML DB Repository using the JCR APIs. See
Chapter 31, "Using Oracle XML DB Content Connector".

See Also: Oracle Database XML Java API Reference for new Java
methods

New Repository Resource Link Types

You can now create weak folder links to represent Oracle XML DB Repository
folder-child relationships. Hard links are still available, as well. See "Link Types" on
page 21-7.

See Also:

»  Oracle Database PL/SQL Packages and Types Reference for updates to
PL/SQL package DBMS_XDB

»  Oracle Database SQL Language Reference for updates to function
under_path

Support for WebDAV Privileges and New Oracle XML DB Privileges

All WebDAV privileges are now supported by Oracle XML DB Repository. In addition,
there are some new Oracle XML DB-specific atomic privileges. See Chapter 27,
"Repository Access Control".



See Also:

s Oracle Database PL/SQL Packages and Types Reference for
information about new PL/SQL package DBMS_NETWORK_ACL_
ADMIN

»  Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL package UTL_TCP

s Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL package UTL_INADDR

Web Services

You can now access Oracle Database through Web services. You can write and deploy
Web services that can query the database using SQL or XQuery, or access stored
PL/SQL functions and procedures. See Chapter 33, "Using Native Oracle XML DB
Web Services"

In-Place XML Schema Evolution

In many cases, you can now evolve XML schemas without copying the corresponding
XML instance documents. See Chapter 10, "XML Schema Evolution".

See Also: Oracle Database PL/SQL Packages and Types Reference for
updates to PL/SQL package DBMS_XMLSCHEMA

Support for Recursive XML Schemas

Oracle XML DB now performs XPath rewrite on some queries that use '/ /' in XPath
expressions to target nodes at multiple or arbitrary depths, even when the XML data
conforms to a recursive XML schema. See "Support for Recursive Schemas" on

page 9-24

See Also: Oracle Database PL/SQL Packages and Types Reference for
updates to PL/SQL package DBMS_XMLSCHEMA

Support for XLink and Xinclude

Oracle XML DB now supports the XLink and XInclude standards. See Chapter 23,
"Using XLink and XInclude with Oracle XML DB".

Support for XML Translations

You can now associate natural-language translation information with XML schemas
and corresponding instance documents. This includes support for standard attributes
xml:lang and xml : srclang. See "XML Translations" on page 7-17.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about new PL/SQL package DBMS_XMLTRANSLATIONS

Support for Large XML Nodes

The previous 64K limit on text nodes and attribute values has been lifted. Text nodes
and attribute values are no longer limited in size to 64K bytes each. New streaming
push and pull APIs are available in PL/SQL, Java, and C to provide virtually
unlimited node sizes. See "Large Node Handling using DBMS_XMLDOM" on

page 13-12 for information about handling large nodes in PL/SQL and "Handling
Large Nodes using Java" on page 15-16.



See Also:

»  Oracle Database SQL Language Reference for information about
creating XMLType tables and columns stored as binary XML

»  Oracle Database XML Java API Reference for information about new
Java methods

s Oracle Database PL/SQL Packages and Types Reference for
information about new PL/SQL package DBMS_SDA and updates
to PL/SQL package DBMS_XMLDOM

Unified Java API
The Java XML APIs in Oracle XML DB and Oracle XML Developer's Kit have been

unified.
See Also:
»  Oracle XML Developer’s Kit Programmer’s Guide
»  Oracle Database XML Java API Reference, package

oracle.xml.parser.v2

Oracle Data Pump Support for XMLType

Oracle Data Pump is now the recommended way to import and export XMLType data.
See Chapter 36, "Exporting and Importing XMLType Tables".

Support for XMLType by Oracle Streams and Logical Standby
Oracle Streams and logical standby now support XMLType stored as CLOB. Both XML

schema-based and non-schema-based XML data are supported.
See Also:
»  Oracle Streams Concepts and Administration
»  Oracle Data Guard Concepts and Administration
s Oracle Database Utilities
»  Oracle Database Reference for information on views DBA_

STREAMS_UNSUPPORTED and DBA_STREAMS_COLUMNS

Oracle XML Developer's Kit Pull-Parser API (XML Events, JSR-173)

You can use the new Oracle XML Developer Kit (XDK) pull-parser API with Oracle
XML DB. See "Using the Oracle XML Developer's Kit Pull Parser with Oracle

XML DB" on page 16-9.

See Also:
»  Oracle Database XML C API Reference for information about new C
methods and types

»  Oracle XML Developer’s Kit Programmer’s Guide
XQuery Standard Compliance

Oracle XML DB support for the XQuery language has been updated to reflect the latest
version of the XQuery standard, W3C XQuery 1.0 Recommendation.

Ivi



See Also:
»  Oracle XML Developer’s Kit Programmer’s Guide

s http://www.w3.org for information about the XQuery
language

Fine-Grained Access to Network Services Using PL/SQL

New atomic privileges are provided for access control entries (ACEs). These privileges
are used for fine-grained PL/SQL access to network services.

SQL/XML Standard Compliance and Performance Enhancements

Oracle XML DB support for the SQL /XML standard has been updated to reflect the
latest version of the standard. This includes support for standard SQL functions
XMLExists and XMLCast. See "Querying XMLType Data using SQL /XML Functions
XMLExists and XMLCast" on page 4-2 and "Generating XML using SQL Functions" on
page 18-2.

See Also: Oracle Database SQL Language Reference for information
about SQL /XML functions XMLExists, XMLCast, XMLQuery,
XMLTable, and XMLForest.

XML-Update Performance Enhancements

The performance of SQL functions used to update XML data has been enhanced for
XML schema-based data that is stored object-relationally. This includes XPath rewrite
for SQL functions updateXML, insertChildxML, and deleteXML.

XQuery and SQL/XML Performance Enhancements

XQuery and SQL /XML performance enhancements include treatment of the
following:

s User-defined XQuery functions
= XQuery prolog variables

s XQuery count function applied to the result of using a SQL /XML generation
function

= Positional expressions in XPath predicates
s XQuery computed constructors

s SQL/XML function XMLAgg
XSLT Performance Enhancements

The performance of XSLT transformations using SQL function XMLTrans form and
XMLType method transform () has been enhanced.

Ivii



Iviii



Part |

Oracle XML DB Basics

Part I of this manual introduces Oracle XML DB. It contains the following chapters:
s Chapter 1, "Introduction to Oracle XML DB"

»  Chapter 2, "Getting Started with Oracle XML DB"

s Chapter 3, "Using Oracle XML DB"






1

Introduction to Oracle XML DB

This chapter introduces the features and architecture of Oracle XML DB. It contains
these topics:

Overview of Oracle XML DB

Oracle XML DB Architecture

Oracle XML DB Features

Oracle XML DB Benefits

Search XML Data using Oracle Text

Build Messaging Applications using Oracle Streams Advanced Queuing
Standards Supported by Oracle XML DB

Oracle XML DB Technical Support

Oracle XML DB Examples Used in This Manual

Further Oracle XML DB Case Studies and Demonstrations

Overview of Oracle XML DB

Oracle XML DB is a set of Oracle Database technologies related to high-performance
handling of XML data: storing, generating, accessing, searching, validating,
transforming, evolving, and indexing. It provides native XML support by
encompassing both the SQL and XML data models in an interoperable way. Oracle
XML DB is included as part of Oracle Database starting with Oracle9i Release 2 (9.2).

Oracle XML DB includes the following features:

An abstract SQL data type, XMLType, for XML data.

Enterprise-level Oracle Database features for XML content: reliability, availability,
scalability, and security. XML-specific memory management and optimizations.

Industry-standard ways to access and update XML data. The standards include
the SQL /XML standard and the World Wide Web Consortium (W3C) XML and
XML Schema data models and recommendations for XPath and XQuery. You can
use FTP, HTTP(S), and WebDAYV to move XML content into and out of Oracle
Database. Industry-standard APIs provide programmatic access and manipulation
of XML content using Java, C, and PL/SQL.

Ways to store, query, update, and transform XML data while accessing it using
SQL.

Ways to perform XML operations on SQL data.

Introduction to Oracle XML DB 1-1



Oracle XML DB Architecture

s Oracle XML DB Repository: a simple, lightweight repository where you can
organize and manage database content, including XML content, using a
file/folder /URL metaphor.

= Ways to access and combine data from disparate systems through gateways, using
a single, common data model. This reduces the complexity of developing
applications that must deal with data from different stores.

= Ways to use Oracle XML DB in conjunction with Oracle XML Developer's Kit
(XDK) to build applications that run in the middle tier in either Oracle Application
Server or Oracle Database.
See Also:
= "XMLIype Data Type" on page 1-12

m http://www.oracle.com/technetwork/database-featur
es/xmldb/overview/index.html for the latest news and
white papers about Oracle XML DB

»  Oracle XML Developer’s Kit Programmer’s Guide

Oracle XML DB Architecture

Figure 1-1 and Figure 1-2 show the software architecture of Oracle XML DB. The main
features are:

= Storage of XMLType tables and views.

- You can index XMLType tables and views using XMLIndex, B-tree, and Oracle
Text indexes.

— You can store data that is in XMLType views in local or remote tables. You can
access remote tables using database links.

s Oracle XML DB Repository. You can store any kind of documents in the repository,
including XML documents that are associated with an XML schema that is
registered with Oracle XML DB. You can access documents in the repository in any
of the following ways:

- HTTP(S), through the HTTP protocol handler
- WebDAV and FTP, through the WebDAV and FIP protocol handlers

- SQL, through Oracle Net Services, including Java Database Connectivity
(JDBC)

= Support of XML data messaging using Oracle Streams Advanced Queuing (AQ)
and Web Services.

1-2 Oracle XML DB Developer's Guide



Oracle XML DB Architecture

Figure 1-1 XMLType Storage and Oracle XML DB Repository

Gateways
to external
sources

Browser
or other
ul
JDBC Desktop FTP
Browser Application Tool Tool
; Oracle
Direct Net WebDAV FTP
Access Services Access Access
Access
Oracle
4= Streams
AQ Access
— Oracle Database
Oracle XML DB
== mmmmm=m====ad Oracle XML DB
XMLType Tables Repositor
and Views P y
[0 XML Services Retrieve / Generate —F& XML Services
* XML Validation XML Using * Versioning
¢ XML Transformation XMLType APIs * ACL S_ecunty
¢ XML Schema * SQL * Foldering
Registration * Java X
« Create Tables . PL/SQL Retrieve / Generate XML

Insert, Delete, Update * C
XMLType tables e C++
Indexing

Using Resource APIs
e SQL

* Java

e PL/SQL

Introduction to Oracle XML DB 1-3



Oracle XML DB Architecture

Figure 1-2 XMLType Storage

JDBC
Direct Oracle WebDAYV Access
HTTP Net and
Access Access FTP Access
A A Oracle A
4= Streams
AQ Access

Oracle
Database

Oracle XML DB \ 4 \ 4 \ 4
HTTP DAV, FTP
Protocol SQ.L Protocol
Handler Engine Handlers
R k]
: XML Schemas '
- :
[ ]
1
Indexes: ! XMLType XMLType 1 Repository
o XMLIndex ' Tables Views e
* B-Tree : J— J—
* Function- == e D Hierarchical
Based —_— — b {:j <+
* Oracle Text Index
—_ R |
— R -I
| Binary XML / '_\_ —_——
Storage Local | 1 Elt_elt'r;lote
Tables : DBLinks : < > Acges(:?ed
Unstructured Storage " | via DBLinks
(cLoB) | L 1 L _____ 4

Structured Storage
(Object Relational)

APIs for XML

See Also:

= Partll, "Storing and Retrieving XML Data in Oracle XML DB"
»  Chapter 28, "Accessing the Repository using Protocols"

»  Chapter 37, "Exchanging XML Data using Oracle Streams AQ"

Table 1-1 lists the reference documentation for the PL/SQL, C, and C++ Application
Programming Interfaces (APIs) that you can use to manipulate XML data. The main
reference for PL/SQL, C, and C++ APIs is Oracle Database PL/SQL Packages and Types
Reference.

1-4 Oracle XML DB Developer's Guide



Oracle XML DB Architecture

See Also: Oracle Database XML Java API Reference for information
about Java APIs for XML
Table 1-1  APIs Related to XML
API Documentation Description
XMLType Oracle Database PL/SQL Packages and PL/SQL, C, and C++ APIs with XML operations on
Types Reference, Chapter "XMLIype", XMLType data — validation, transformation.
Oracle Database XML C API
Reference, and Oracle Database XML
C++ API Reference
Database URI types Oracle Database PL/SQL Packages and Functions used for various URI types.

DBMS_METADATA

DBMS_RESCONFIG

DBMS_XDB

DBMS_XDB_ADMIN

DBMS_XDBRESOURCE

DBMS_XDBT

DBMS_XDB_VERSION

DBMS_XDBZ

DBMS_XEVENT

DBMS_XMLDOM

DBMS_XMLGEN

DBMS_XMLINDEX

DBMS_XMLPARSER

Types Reference, Chapter "Database
URI TYPEs"

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
METADATA"

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
RESCONFIG"

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
XDB"

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
XDB_ADMIN"

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
XDBRESOURCE"

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
XDBT"

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
XDB_VERSION"

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
XDBZ"

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
XEVENT"

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
XMLDOM"

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
XMLGEN"

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
XMLINDEX

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_
XMLPARSER"

PL/SQL API for retrieving metadata from the
database dictionary as XML, or retrieving creation
DDL and submitting the XML to re-create the
associated object.

PL/SQL API to operate on a resource configuration
list, and to retrieve listener information for a
resource.

PL/SQL API for managing Oracle XML DB
Repository resources, ACL-based security, and
configuration sessions.

PL/SQL API for managing miscellaneous features
of Oracle XML DB, including the XML Index index
on the Oracle XML DB Repository.

PL/SQL API to operate on repository resource
metadata and contents.

PL/SQL API for creation of text indexes on
repository resources.

PL/SQL API for version management of repository
resources.

Oracle XML DB Repository ACL-based security.

PL/SQL API providing event-related types and
supporting interface.

PL/SQL implementation of the DOM API for
XMLType.

PL/SQL API for transformation of SQL query
results into canonical XML format.

PL/SQL API for XMLIndex.

PL/SQL implementation of the DOM Parser API
for XMLType.

Introduction to Oracle XML DB 1-5



Oracle XML DB Architecture

Table 1-1 (Cont.) APIs Related to XML

API

Documentation

Description

DBMS_XMLSCHEMA

DBMS_XMLSTORE

DBMS_XSLPROCESSOR

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_

XMLSCHEMA

Oracle Database PL/SQL Packages and
Types Reference, Chapter "DBMS_

XMLSTORE"

Oracle Database PL/SQL Packages and

tables.

Types Reference, Chapter "DBMS_
XSLPROCESSOR"

Catalog Views

Related to XML

Table 1-2 lists the catalog views related to XML. Information about a given view can

be obtained by using SQL command DESCRIBE.

DESCRIBE USER_XML_SCHEMAS

Table 1-2 Catalog Views Related to XML

Schema

Description

USER_XML_SCHEMAS
ALL_XMI, SCHEMAS
DBA_XMIL,_SCHEMAS
USER_XMIL,_TABLES
ALL_XMI,_TABLES
DBA_XMI,_TABLES
USER_XMI,_TAB_COLS
ALL_XMI,_TAB_COLS
DBA_XMIL,_TAB_COLS
USER_XMIL,_VIEWS
ALL_XML_VIEWS
DBA_XML_VIEWS
USER_XML_VIEW_COLS
ALL_XML_VIEW_COLS

DBA_XML_VIEW_COLS

Registered XML schemas owned by the current user
Registered XML schemas usable by the current user
Registered XML schemas in Oracle XML DB
XMLType tables owned by the current user
XMLType tables usable by the current user
XMLType tables in Oracle XML DB

XMLType table columns owned by the current user
XMLType table columns usable by the current user
XMLType table columns in Oracle XML DB
XMLType views owned by the current user
XMLType views usable by the current user
XMLType views in Oracle XML DB

XMLType view columns owned by the current user
XMLType view columns usable by the current user

XMLType view columns in Oracle XML DB

PL/SQL API for managing XML schemas within
Oracle Database — schema registration, deletion.

PL/SQL API for storing XML data in relational

PL/SQL implementation of an XSLT processor.

In addition to the views ALL_XML_TABLES, DBA_XML_TABLES, and USER_XML_
TABLES, views ALL_OBJECT_TABLES, DBA_OBJECT_TABLES, and USER_OBJECT_
TABLES provide tablespace and other storage information for XML Type data stored
object-relationally.

See Also:
»  Oracle Database Reference

»  Oracle Database PL/SQL Packages and Types Reference

1-6 Oracle XML DB Developer's Guide



Oracle XML DB Architecture

Overview of Oracle XML DB Repository

Oracle XML DB Repository is a component of Oracle Database that lets you handle
XML data using a file/folder/URL metaphor. The repository contains resources,
which can be either folders (directories, containers) or files.

A resource has these properties:

It is identified by a path and name.
It has content (data), which can be XML data but need not be.

It has a set of system-defined metadata (properties), such as Owner and
CreationDate, in addition to its content. Oracle XML DB uses this information
to manage the resource.

It might also have user-defined metadata. Like system-defined metadata, this is
information that is not part of the content, but is associated with it.

It has an associated access control list that determines who can access the
resource, and for what operations.

Although Oracle XML DB Repository treats XML content specially, you can use the
repository to store other kinds of data besides XML. You can use the repository to
access any data that is stored in Oracle Database.

You can access data in the repository in the following ways (see Figure 1-1):

SQL - Using views RESOURCE_VIEW and PATH_VIEW
PL/SQL - Using package DBML_XDB
Java — Using the Oracle XML DB resource API for Java

See Also:
= Part V. "Oracle XML DB Repository"

»  Chapter 28, "Accessing the Repository using Protocols" for
information about accessing XML data in XMLType tables and
columns using external protocols

»  Chapter 29, "User-Defined Repository Metadata"

XML Services

Besides providing APIs for accessing and manipulating repository data, Oracle
XML DB provides APIs for the following repository services:

Versioning — Oracle XML DB uses PL/SQL package DBMS_XDB_VERSION to
version resources in Oracle XML DB Repository. Updating a resource creates a

new version. Previous versions are retained. Versioning support is based on the
IETF WebDAV standard.

ACL Security — Repository security is based on access control lists (ACLs). Each
resource has an associated ACL that lists the privileges required to use it in
various ways. When a resource is accessed or manipulated, its ACL determines
whether the requested operation is allowed. An ACL is an XML document that
contains a set of access control entries (ACEs). Each ACE grants or revokes a set of
permissions to a particular user or group (database role). This access control
mechanism is based on the WebDAYV specification.

Foldering — Oracle XML DB Repository manages a persistent hierarchy of folder
(that is, directory) resources that contain other resources (files or folders). Oracle
XML DB modules such as protocol servers, the XML schema manager, and the

Introduction to Oracle XML DB 1-7



Oracle XML DB Architecture

Oracle XML DB RESOURCE_VIEW API use foldering to map repository path
names to the resources they target.

Views RESOURCE_VIEW and PATH_VIEW

Views RESOURCE_VIEW and PATH_VIEW provide SQL access to data in Oracle
XML DB Repository through protocols such as FTP and WebDAV. View PATH_VIEW
has one row for each unique path in the repository. View RESOURCE_VIEW has one
row for each resource in the repository.

The Oracle XML DB resource API for PL/SQL, DBMS_XDB, provides query and DML
functions. It is based on RESOURCE_VIEW and PATH_VIEW.

See Also:

»  Chapter 25, "Accessing the Repository using RESOURCE_
VIEW and PATH_VIEW"

»  Oracle Database Reference for more information about view
PATH_VIEW

»  Oracle Database Reference for more information about view
RESOURCE_VIEW

Oracle XML DB Repository Architecture

Figure 1-3 illustrates the architecture of Oracle XML DB Repository.
See Also:
s Chapter 21, "Accessing Oracle XML DB Repository Data"

»  Chapter 25, "Accessing the Repository using RESOURCE_
VIEW and PATH_VIEW"

1-8 Oracle XML DB Developer's Guide



Oracle XML DB Architecture

Figure 1-3 Oracle XML DB Repository Architecture

Application Logical View of
Oracle XML DB Repository

(i
: D Table
Name |ACL | Property 1 | Property N | Property N
~(J
: abc
Oracle Database \
Database View of Oracle XML DB Repository X'\Ala""}’spe
RESOURCE_VIEW (XMLType) Path —
Name |ACL | Property 1 | Property N | Extra | Content | Parent p—
‘ ‘ ‘ ‘ = g
FTP
WebDAV
XMLIndex B-Tree Function-Based || | Oracle Text Hierarchical Tables or
Index Index Index Index Index c}{l)e(vl\\;lsL

\

//

Files and Folders

Relational databases are traditionally poor at managing hierarchical structures and
traversing a path or a URL. Oracle XML DB Repository provides you with a
hierarchical organization of XML content in the database. You can query and manage
it as if it were organized using files and folders.

The relational table-row-column metaphor is an effective model for managing highly
structured data. It can be less effective for managing semi-structured and unstructured
data, such as document-oriented XML data.

For example, a book is not easily represented as a set of rows in a table. It might be
more natural to represent a book as a hierarchy, book—chapter—section—paragraph,
and to represent the hierarchy as a set of folders and subfolders.

A hierarchical repository index speeds up folder and path traversals. Oracle
XML DB includes a patented hierarchical index that speeds up folder and path
traversals in Oracle XML DB Repository. The hierarchical repository index is
transparent to end users, and lets Oracle XML DB perform folder and path
traversals at speeds comparable to or faster than conventional file systems.

You can access XML documents in Oracle XML DB Repository using standard
connect-access protocols such as FTP, HTTP(S), and WebDAY, in addition to
languages SQL, PL/SQL, Java, and C. The repository provides content authors
and editors direct access to XML content stored in Oracle Database.

A resource in this context is a file or folder, identified by a URL. WebDAV is an
IETF standard that defines a set of extensions to the HTTP protocol. It lets an

Introduction to Oracle XML DB 1-9



Oracle XML DB Architecture

HTTP server act as a file server for a DAV-enabled client. For example, a
WebDAV-enabled editor can interact with an HTTP/WebDAV server as if it were a
file system. The WebDAYV standard uses the term resource to describe a file or a
folder. Each resource managed by a WebDAV server is identified by a URL. Oracle
XML DB adds native support to Oracle Database for these protocols. The protocols
were designed for document-centric operations. By providing support for these
protocols, Oracle XML DB lets Microsoft Windows Explorer, Microsoft Office, and
products from vendors such as Altova and Adobe work directly with XML content
stored in Oracle XML DB Repository. Figure 14 shows the root-level directory of
the repository as seen from a Web browser.

Figure 1-4 Web Browser View of Oracle XML DB Repository

=10] x|
File Edit ‘Wwiew Favorites Tools  Help ﬁ

= Back ~ = - | ‘Qisearch [YFolders £4 | B QE =0 | i
Address r@ Fbp: ) scakk: tiger@xdbdemno; 2100/ j @GD Links **

@ @@ G el

home pubilic Sys wdbconfig, il

| |Llser: scakk (=2 Local inkranet o

See Also: Chapter 3, "Using Oracle XML DB"

Hence, WebDAV clients such as Microsoft Windows Explorer can connect directly to
Oracle XML DB Repository. No additional Oracle Database or Microsoft-specific
software or other complex middleware is needed. End users can work directly with
Oracle XML DB Repository using familiar tools and interfaces.

Oracle XML DB Protocol Architecture

One key feature of the Oracle XML DB architecture is that protocols HTTP(S),
WebDAV, and FTP are supported, including in a shared server configuration. When
the Listener receives an HTTP(S) or FTP request, it hands it off to an Oracle Database
shared server process which services it and sends the appropriate response back to the
client.

You can use the TNS Listener command, 1snrctl status, to verify that HTTP(S)
and FTP support has been enabled. Example 1-1 illustrates this.

Example 1-1 Listener Status with FTP and HTTP(S) Protocol Support Enabled
LSNRCTL for 32-bit Windows: Version 11.1.0.5.0 - Production on 20-AUG-2007 16:02:34

1-10 Oracle XML DB Developer's Guide



Oracle XML DB Architecture

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC) (KEY=EXTPROC1521))) STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for 32-bit Windows: Version 11.1.0.5.0 - Beta
Start Date 20-JUN-2007 15:35:40

Uptime 0 days 16 hr. 47 min. 42 sec

Trace Level off

Security ON: Local 0OS Authentication

SNMP OFF

Listener Parameter File C:\oracle\product\11.1.0\db_1\network\admin\listener.ora
Listener Log File c:\oracle\diag\tnslsnr\quine-pc\listener\alert\log.xml

Listening Endpoints Summary...
(DESCRIPTION= (ADDRESS=(PROTOCOL=1ipc) (PIPENAME=\\.\pipe\EXTPROC1521ipc)))
(DESCRIPTION= (ADDRESS= (PROTOCOL=tcp) (HOST=quine-pc.example.com) (PORT=1521)))
(DESCRIPTION= (ADDRESS=(PROTOCOL=tcp) (HOST=quine-pc.example.com)
(PORT=21) ) (Presentation=FTP) (Session=RAW))
(DESCRIPTION= (ADDRESS= (PROTOCOL=tcp) (HOST=quine-pc.example.com)
(PORT=443) ) (Presentation=HTTP) (Session=RAW))
Services Summary...
Service "orcl.example.com" has 1 instance(s).
Instance "orcl", status READY, has 1 handler(s) for this service...
Service "orclXDB.example.com" has 1 instance(s).
Instance "orcl", status READY, has 1 handler(s) for this service...
Service "orcl_XPT.example.com" has 1 instance(s).
Instance "orcl", status READY, has 1 handler(s) for this service...
The command completed successfully

See Also: Chapter 28, "Accessing the Repository using Protocols”

Programmatic Access to Oracle XML DB (Java, PL/SQL, and C)

All Oracle XML DB functionality is accessible from C, PL/SQL, and Java. You can
build Web-based applications in various ways, including these:

= Using servlets and Java Server Pages (JSP). A typical API accesses data using Java
Database Connectivity (JDBC).

= Using Extensible Stylesheet Language (XSL) plus XML Server Pages (XSP). A
typical API accesses data in the form of XML documents that are processed using
a Document Object Model (DOM) API implementation.

Oracle XML DB supports such styles of application development. It provides Java,
PL/SQL, and C implementations of the DOM APL

Applications that use JDBC, such as those based on servlets, need prior knowledge of
the data structure they are processing. Oracle JDBC drivers allow you to access and
update XMLType tables and columns, and call PL/SQL procedures that access Oracle
XML DB Repository.

Applications that use DOM, such as those based on XSLT transformations, typically
require less knowledge of the data structure. DOM-based applications use string
names to identify pieces of content, and must dynamically walk through the DOM tree
to find the required information. For this, Oracle XML DB supports the use of the
DOM API to access and update XMLType columns and tables. Programming to a DOM
API is more flexible than programming through JDBC, but it may require more
resources at run time.

Introduction to Oracle XML DB  1-11



Oracle XML DB Features

Oracle XML DB Features

Any database used for managing XML must be able to persist XML documents. Oracle
XML DB is capable of much more than this. It provides standard database features
such as transaction control, data integrity, replication, reliability, availability, security,
and scalability, while also allowing for efficient indexing, querying, updating, and
searching of XML documents in an XML-centric manner.

The hierarchical nature of XML presents the traditional relational database with some
challenges:

= In arelational database, the table-row metaphor locates content. Primary-Key
Foreign-Key relationships help define the relationships between content. Content
is accessed and updated using the table-row-column metaphor.

= XML, on the other hand, uses hierarchical techniques to achieve the same
functionality. A URL is used to locate an XML document. URL-based standards
such as XLink are used to define relationships between XML documents. W3C
Recommendations such as XPath are used to access and update content contained
within XML documents. Both URLs and XPath expressions are based on
hierarchical metaphors. A URL uses a path through a folder hierarchy to identify a
document, whereas XPath uses a path through the node hierarchy of an XML
document to access part of an XML document.

Oracle XML DB addresses these challenges by introducing SQL functions and methods
that allow the use of XML-centric metaphors, such as XQuery and XPath expressions
for querying and updating XML Documents.

These are the major features of Oracle XML DB:

s XMLIype Data Type

s XML Schema Support

= XMLType Storage Models

= XML/SQL Duality

s SQL/XML Standard Functions

= Automatic Rewriting of XQuery and XPath Expressions

= Overview of Oracle XML DB Repository. This was described on page 1-7.

XMLType Data Type

XMLType is an abstract native SQL data type for XML data. It provides methods that
allow operations such as XML Schema validation and XSL transformation of XML
content. You can use XMLType as you would any other SQL data type. For example,
you can use XMLType when you do any of the following:

s Create a column in a relational table
s Declare a PL/SQL variable
= Define or call a PL/SQL procedure or function

XMLType is an Oracle Database object type, so you can also create a table of XMLType
object instances. By default, an XMLType table or column can contain any well-formed
XML document.

1-12 Oracle XML DB Developer's Guide



Oracle XML DB Features

See Also: Oracle Database Object-Relational Developer’s Guide for
information about Oracle Database object types and object-relational
storage

XMLType Tables and Columns Can Conform to an XML Schema
XMLType tables or columns can be constrained to conform to an XML schema. This
has several advantages:

= The database ensures that only XML documents that validate against the XML
schema are stored in the column or table. Invalid documents are excluded.

= Because XML schema-based data conforms to a predefined XML structure, Oracle
XML DB can use the information contained in the XML schema to optimize
querying and updating of the data.

s If you store XML schema-based data using structured storage, Oracle XML DB
automatically decomposes it and stores it as a set of object-relational objects. The
object-relational model used to store the document is derived from the XML
schema.

XMLType API
Data type XMLType provides the following:

»  Constructors, which you can use to create an XMLType instance from a VARCHAR,
CLOB, BLOB, or BFILE value.

»  XML-specific methods that operate on XMLType instances. These include the

following:

m extract ()- Extract a subset of nodes contained in the XMLType instance.

= existsNode () —Check whether or not a particular node exists in the
XMLType instance.

= schemaValidate () — Validate the content of the XML Type instance against
an XML schema.

s transform() — Perform an XSL transformation on the content of an

XMLType instance.

See Also: Chapter 4, "XMLType Operations” and Chapter 11,
"Transforming and Validating XMLType Data"

XML Schema Support

Support for the Worldwide Web Consortium (W3C) XML Schema Recommendation is
a key feature in Oracle XML DB. XML Schema specifies the structure, content, and
certain semantics of XML documents. It is described in detail at
http://www.w3.0rg/TR/xmlschema-0/.

The W3C Schema Working Group publishes a particular XML schema, often referred
to as the schema for schemas, that provides the definition, or vocabulary, of the XML
Schema language. An XML schema definition (XSD'), also called an XML schema, is
an XML document that is compliant with the vocabulary defined by the schema for
schemas.

1 xsdis the prefix used in the schema of schemas for the XML Schema namespace, hence it is
also the namespace prefix used for the XML Schema data types, such as xsd: string. xsdis
also used often as the file extension of XML schema files.

Introduction to Oracle XML DB 1-13



Oracle XML DB Features

An XML schema uses vocabulary defined by the schema for schemas to create a
collection of XML Schema type definitions and element declarations that comprise a
vocabulary for describing the contents and structure of a new class of XML
documents, the XML instance documents that conform to that XML schema.

Note: This manual uses the term "XML schema" (lower-case "s") to
reference any XML schema that conforms to the W3C XML Schema
(upper-case "S") Recommendation. Since an XML schema is used to
define a class of XML documents, the term "instance document” is
often used to describe an XML document that conforms to a
particular XML schema.

The XML Schema language provides strong typing of elements and attributes. It
defines numerous scalar data types. This base set of data types can be extended to
define more complex types, using object-oriented techniques such as inheritance and
extension. The XML Schema vocabulary also includes constructs that you can use to
define complex types, substitution groups, repeating sets, nesting, ordering, and so on.
Oracle XML DB supports all of the constructs defined by the XML Schema
Recommendation, except for redefines.

XML schemas are commonly used as a mechanism for checking (validating) whether
XML instance documents conform with their specifications. Oracle XML DB includes
XMLType methods and SQL functions that you can use to validate XML documents
against an XML schema.

In Oracle XML DB, you can use a standard data model for all of your data, regardless
of how structured it is. You can use XML Schema to automatically create database
tables for storing your XML data. XML schema-based data maintains DOM fidelity
and allows for significant database optimizations.

XML schema-based data can be stored using any Oracle XML DB XMLType storage
model: binary XML storage, structured (object-relational) storage, or unstructured
(cLOB) storage. Non-schema-based XML data can be stored using binary XML storage
or unstructured storage.

You can also wrap existing relational and object-relational data as XMLType views,
which can optionally be XML schema-based. You can map from incoming XML
documents to XMLType storage, specifying the mapping using a registered XML
schema.

See Also: Chapter 7, "XML Schema Storage and Query: Basic" for
more information about using XML schemas with Oracle XML DB

XMLType Storage Models

XMLType is an abstract data type that provides different storage models to best fit your
data and your use of it. As an abstract data type, your applications and database
queries gain in flexibility: the same interface is available for all XMLType operations.
Because different storage (persistence) models are available, you can tailor
performance and functionality to best fit the kind of XML data you have and the
pattern of its use. One key decision to make when using Oracle XML DB for persisting
XML data as XMLType is thus which storage model to use for which XML data.

You can change XML Type storage from one model to another, using database
import/export (see Chapter 36, "Exporting and Importing XMLType Tables"). Your
application code need not change. You can change XML storage options when tuning
your application.

1-14 Oracle XML DB Developer's Guide



Oracle XML DB Features

XMLType tables and columns can be stored in these ways:

= Structured storage — XMLType data is stored as a set of objects. This is also
referred to as object-relational storage and object-based persistence.

s Unstructured storage — XML Type data is stored in Character Large Object (CLOB)
instances. This is also referred to as CLOB storage and text-based persistence.

= Binary XML storage — XMLType data is stored in a post-parse, binary format
specifically designed for XML data. Binary XML is compact, post-parse, XML
schema-aware XML. This is also referred to as post-parse persistence.

Oracle Database provides two LOB storage options, SecureFile and BasicFile. Either of
these can be used with unstructured (CLOB-based) XMLType storage. BasicFile LOB
storage is the default for unstructured storage.

For binary XML data, SecureFile is the default storage op’cion.2 However, if either of
the following is true then it is not possible to use SecureFile LOB storage. In that case,
BasicFile is the default option for binary XML data:

= The tablespace for the XML Type table does not use automatic segment space
management.

= Asetting in file init . ora prevents SecureFile LOB storage. For example, see
parameter DB_SECUREFILE.

See Also:

»  Oracle Database SQL Language Reference, section "CREATE TABLE",
clause "LOB_storage_clause"

»  Oracle Database SecureFiles and Large Objects Developer’s Guide for
information about LOB storage options SecureFile and BasicFile

»  Oracle Database Administrator's Guide for information about
automatic segment space management

s Oracle Database Reference for information about parameter DB_
SECUREFILE

You can mix storage models, using one model for one part of an XML document and a
different model for another part. The mixture of structured and unstructured storage is
sometimes called hybrid storage. What is true about structured storage is true about
the structured part of hybrid storage. What is true about unstructured storage is true
about the unstructured part of hybrid storage.

XMLType has multiple storage models, and some models can be configured in more
than one way. Each model has its advantages, depending on the context. Each model
has one or more types of index that are appropriate for it.

The first thing to consider, when choosing an XMLType storage model, is the nature of
your XML data and the ways you use it. A spectrum exists, with data-centric use of
highly structured data at one end, and document-centric use of highly unstructured
data at the other. The first question to ask yourself is this: Is your use case primarily
data-centric or document-centric?

= Data-centric — Your data is, in general, highly structured, with relatively static and
predictable structure, and your applications take advantage of this structure. Your
data conforms to an XML schema.

2 Prior to Oracle Database 11¢ Release 2 (11.2.0.2) the BasicFile option was the default for binary
XML storage. Use of the BasicFile option for binary XML data 1s deprecated.

Introduction to Oracle XML DB 1-15



Oracle XML DB Features

Document-centric — Two cases:

- Your data is generally without structure or of variable structure. Document
structure can vary over time (evolution). Content is mixed (semi-structured):
many elements contain both text nodes and child elements. Many XML
elements can be absent or can appear in different orders. Documents might or
might not conform to an XML schema.

- Your data relatively structured, but your applications do not take advantage of
that structure: they treat the data as if it were without structure.

Note: Please be aware of the context, so as not to confuse discussion
of storage options with discussion of the structure of the XML content
to be stored. In this book, "structured" and "unstructured" generally
refer to XMLType storage options. They refer less often to the nature of
your data. "Hybrid" refers to object-relational storage with some
embedded CLOB storage. "Semi-structured" refers to XML content,
regardless of storage. Unstructured storage is CLOB-based storage,
and structured storage is object-relational storage.

Once you've located the data-centric or document-centric half of the spectrum that is
appropriate for your use case and data, consider whether your case is at an end of the
spectrum or closer to the middle. That is, just how data-centric or document-centric is
your case?

Employ object-relational (structured) storage for purely data-centric uses. A typical
example of this use case would be an employee record (fields employee number,
name, address, and so on). Use B-tree indexing with object-relational storage.

Employ hybrid storage if your data is composed primarily of invariable XML
structures, but it does contain some variable data; that is, it contains a predictably
few mixed-content elements. A typical example of this use case would be an
employee record that includes a free-form resume. Index the structured and
unstructured parts of your data separately, using appropriate indexes for each
part.

Employ binary XML storage or CLOB-based (unstructured) storage for all
document-centric use cases. XMLIndex is the indexing method of choice here.

- For general indexing of document-centric XML data, use XMLIndex indexes
with unstructured components. A typical example of this use case would be
an XML Web document or a book chapter.

- If your data contains some predictable, fixed structures that you query
frequently, then you can use XMLIndex indexes with structured components
on those parts. A typical example of this use case would be a free-form
specification, with author, date, and title fields.

A single XMLIndex index can have both structured and unstructured components,
to handle islands of structure within generally unstructured content. A use case
where you might use both components would be to support queries that extract an
XML fragment from a document whenever some structured data is present. The
unstructured index component is used for the fragment extraction. The structured
component is used for the SQL WHERE clause that checks for the structured data.

In all cases, you can additionally use Oracle Text indexing for full-text queries. This is
especially useful for document-centric cases.

1-16 Oracle XML DB Developer's Guide



Oracle XML DB Features

These considerations are summarized in Figure 1-5. The figure shows the spectrum of
use cases, from most data-centric, at the left, to most document-centric, at the right.
The table in the figure classifies use cases and shows the corresponding storage
models and indexing methods.

Figure 1-5 XML Use Cases and XMLType Storage Models

Data-Centric

Document-Centric

includes a free-form
resume

author, date, and title
fields

Use Case XML schema-based data,| XML schema-based Variable, free-form data, | Variable, free-form
with little variation and data, with some with some fixed data
little structural change embedded variable embedded structures
over time data

Typical Data Employee record Employee record that Technical article, with Web document or

book chapter

XML Index index with
unstructured component

structured and
unstructured components

Storage Model | Object-Relational Hybrid CLOB (Unstructured) or Binary XML
(Structured)
Indexing B-tree index - B-tree index XMLIndex index with XMLIndex index with

unstructured
component

See Chapter 6, "Indexing XMLType Data" for more information about indexing XML
data. In particular, note that some types of indexing are complementary or orthogonal,
so you can use them together.

The following list and Table 1-3 outline some of the advantages of each storage model.

Structured (object-relational) storage advantages over the other storage models
include near-relational query and update performance, optimized memory
management, reduced storage requirements, B-tree indexing, and in-place
updates. These advantages are at a cost of increased processing overhead during
ingestion and full retrieval of XML data, and reduced flexibility in the structure of
the XML that can be managed by a given XMLType table or column. Structural
flexibility is reduced because data and metadata (such as column names) are
separated in object-relational storage. Instance structures cannot vary easily.
Structured storage is particularly appropriate for highly structured data whose
structure does not vary, if this maps to a manageable number of database tables
and joins.

Unstructured (CLOB) storage enables higher throughput than structured storage
when inserting and retrieving entire XML documents. No data conversion is
needed, so the same format can be used outside the database. Unstructured
storage also provides greater flexibility than structured storage in the structure of
the XML that can be stored. Unstructured storage is particularly appropriate for
document-centric use cases. These advantages can come at the expense of certain
aspects of intelligent processing: in the absence of indexing, there is little that the
database can do to optimize queries or updates on XML data that is stored in a
CLOB instance. In particular, the cost of XML parsing (often implicit) can
significantly impact query performance. Indexing with XMLIndex can improve
the performance of queries against unstructured storage.

Binary XML storage provides more efficient database storage, updating, indexing,
and fragment extraction than unstructured storage. It can provide better query
performance than unstructured storage—it does not suffer from the XML parsing

Introduction to Oracle XML DB  1-17



Oracle XML DB Features

bottleneck (it is a post-parse persistence model). Like structured storage, binary
XML storage is aware of XML Schema data types and can take advantage of native
database data types. Like structured storage, binary XML storage allows for
piecewise updates. Because binary XML data can also be used outside the
database, it can serve as an efficient XML exchange medium, and you can off load
work from the database to increase overall performance in many cases. Like
unstructured storage, binary XML data is kept in document order. Like structured
storage, data and metadata can, using binary storage, be separated at the database
level, for efficiency. Like unstructured storage, however, binary XML storage
allows for intermixed data and metadata, which lets instance structures vary.
Binary XML storage allows for very complex and variable data, which in the
structured-storage model could necessitate using many database tables. Unlike the
other XMLType storage models, you can use binary storage for XML schema-based
data even if the XML schema is not known beforehand, and you can store multiple

XML schemas in the same table and query across common elements.

Table 1-3 XMLType Storage Models: Relative Advantages

Structured (Object-Relational)

Quality Storage Binary XML Storage Unstructured (CLOB) Storage

Throughput ~ — XML decomposition can result in + High throughput. Fast DOM  ++ High throughput when ingesting
reduced throughput when ingesting or loading. There is a slight and retrieving the entire content of
retrieving the entire content of an XML overhead from the binary XML  an XML document.
document. encoder/decoder.

Queries ++ Extremely fast: relational query + Streaming XPath evaluation =~ - XPath operations are evaluated by
performance. avoids DOM constructionand  constructing a DOM from the CLOB
You can create B-tree indexes on the allows evaluat.ion Qf mu.ltiple data an.d using fun«?tional

- - : XPath expressions in a single evaluation. Expensive when

underlying object-relational columns. P : >

pass. Navigational XPath performing operations on large
evaluation is significantly faster ~documents or large collections of
than with unstructured storage. ~documents.
XMLIndex indexing can XMLIndex indexing can improve
improve performance of performance of XPath-based
XPath-based queries. queries.

Update ++ Extremely fast: relational columns  + In-place, piecewise update for - When any part of the document is

operations are updated in place. SecureFile LOB storage. updated, the entire document must

(DML) be written back to disk.

Space ++ Extremely space-efficient. + Space-efficient. - Consumes the most disk space,

efficiency due to insignificant whitespace and

(disk) repeated tags.

Data flexibility - Limited flexibility. Only documents  + Flexibility in the structure of =~ + Flexibility in the structure of the
that conform to the XML schema can ~ the XML documents that canbe XML documents that can be stored
be stored in the XMLType table or stored in an XMLType column or in an XMLType column or table.
column. table.

XML schema - An XMLType table can only store ++ Can store XML ++ Can store XML schema-based or

flexibility documents that conform to the same  schema-based or non-schema-based documents.
XML schema. non-schema-based documents. ~ Cannot use multiple XML schemas
In-place XML schema evolution is An XMLType table can store for the same XMLType table.

. : P documents that conform to any
available, with some restrictions. i
registered XML schemas.

XML fidelity =~ DOM fidelity: A DOM created from an DOM fidelity (see structured + Document fidelity: Maintains the
XML document that has been stored in  storage description). original XML data, byte for byte. In
the database is identical to a DOM particular, all original whitespace is
created from the original document. preserved.

However, insignificant whitespace
may be discarded.

Indexing + B-tree, bitmap, Oracle Text, XMLIndex, function-based, and XMLIndex, function-based, and

support XMLIndex, and function-based Oracle Text indexes. Oracle Text indexes.

indexes.

1-18 Oracle XML DB Developer's Guide



Oracle XML DB Features

Table 1-3 (Cont.) XMLType Storage Models: Relative Advantages

Structured (Object-Relational)

Quality Storage Binary XML Storage Unstructured (CLOB) Storage
Optimized + XML operations can be optimized to + XML operations can be — XML operations on the document
memory reduce memory requirements. optimized to reduce memory require creating a DOM from the
management requirements. document.

Validation XML data is partially validated when  + XML schema-based data is XML schema-based data is partially

upon insert

it is inserted.

fully validated when it is
inserted.

validated when it is inserted.

Partitioning

+ Available.!

Partition based on virtual
columns.

XMLType columns can be
partitioned if the partitioning key is
a relational column.

Streams-based
replication

— Not available.

— Not available.

++ Available.

Compression

++ XML elements and attributes can
be compressed individually.

+ XML data that uses SecureFile
LOB storage can be compressed.

— Not available.

' Partitioning of ordered collection tables (OCTs) reflects the partitioning of the top-level XML Type tables. Partition maintenance
operations on the top-level tables are cascaded to the associated OCTs. See "Partitioning XMLType Tables and Columns Stored
Object-Relationally" on page 9-10.

Note:

When you insert XML schema-based data into binary

XMLType columns or tables, the data is fully validated against the XML
schema. Insertion fails if the data is invalid.

When XMLType is stored object-relationally, the XMLType instances contain hidden
columns that store information about the XML data that does not fit into the SQL

object model.

XML/SQL Duality

A key objective of Oracle XML DB is to provide XML/SQL duality. XML programmers
can leverage the power of the relational model when working with XML content and
SQL programmers can leverage the flexibility of XML when working with relational
content. This lets you use the most appropriate tools for a particular business problem.

XML/SQL duality means that the same data can be exposed as rows in a table and
manipulated using SQL or exposed as nodes in an XML document and manipulated
using techniques such as DOM and XSL transformation. Access and processing
techniques are independent of the underlying storage format.

These features provide simple solutions to common business problems. For example:

= You can use Oracle XML DB SQL functions to generate XML data directly from a
SQL query. You can then transform the XML data into other formats, such as

HTML, using the database-resident XSLT processor.

= You can access XML content without converting between different data formats,
using SQL queries, on-line analytical processing (OLAP), and
business-intelligence/data warehousing operations.

= You can perform text, spatial data, and multimedia operations on XML content.

Introduction to Oracle XML DB 1-19



Oracle XML DB Features

SQL/XML Standard Functions

Oracle XML DB provides the SQL functions that are defined in the SQL /XML
standard. SQL/XML functions fall into two groups:

= Functions that you can use to generate XML data from the result of a SQL query. In
this book, these are called SQL/XML publishing functions. They are also
sometimes called SQL/XML generation functions.

= Functions that you can use to query and access XML content as part of normal SQL
operations. In this book, these are called SQL/XML query and access functions.

Using SQL /XML functions you can address XML content in any part of a SQL
statement. These functions use XQuery or XPath expressions to traverse the XML
structure and identify the nodes on which to operate. The ability to embed XQuery
and XPath expressions in SQL statements greatly simplifies XML access.

See Also:

»  Oracle Database SQL Language Reference for information about
Oracle support for the SQL /XML standard

»  Chapter 4, "XMLType Operations" and Chapter 5, "Using XQuery
with Oracle XML DB" for detailed descriptions of the SQL /XML
standard functions for querying XML data

s Generating XML using SQL Functions on page 18-2 for
information about SQL /XML standard functions for generating
XML data

s Chapter 3, "Using Oracle XML DB" for additional examples that
use SQL /XML standard functions

» "Standards Supported by Oracle XML DB" on page 1-27

Automatic Rewriting of XQuery and XPath Expressions

SQL/XML functions and XMLType methods use XQuery or XPath expressions to
search collections of XML documents and to access a subset of the nodes contained
within an XML document. In many cases, Oracle XML DB is able to automatically
rewrite such expressions to code that executes directly against the underlying database
objects.

How XPath Expressions Are Evaluated by Oracle XML DB

Oracle XML DB provides the following ways of evaluating XPath expressions that
operate on XMLType columns and tables, depending on the XML storage method
used:

= Structured storage — Oracle XML DB attempts to translate the XPath expression in
a SQL/XML function into an equivalent SQL query. The SQL query references the
object-relational data structures that underpin a schema-based XMLType. This
process is referred to as XPath rewrite. It can occur when performing queries and
UPDATE operations. In addition, B-tree indexes on the underlying object-relational
tables can be used to evaluate XPath expressions for structured storage.

= Unstructured storage — XMLIndex indexes can be used to evaluate XPath
expressions for unstructured storage. Use XMLIndex by preference.

- If an XMLIndex index can be used, then it is used instead of functional
evaluation.

1-20 Oracle XML DB Developer's Guide



Oracle XML DB Features

— In the absence of such an index, Oracle XML DB evaluates the XPath
expression using functional evaluation. Functional evaluation builds a DOM
tree for each XML document, and then resolves the XPath programmatically
using the methods provided by the DOM APIL. If the operation involves
updating the DOM tree, the entire XML document must be written back to
disk when the operation is completed.

= Binary XML storage — Oracle XML DB can evaluate XPath expressions in different
ways: using XMLIndex and using single-pass streaming. Single-pass streaming
means evaluating a set of XPath expressions in a single scan of binary XML data.
During query compilation, the cost-based optimizer picks the fastest combination
of evaluation methods.

See Also: Table 1-3, " XMLType Storage Models: Relative
Advantages"

Rewriting SQL Code That Contains XQuery and XPath Expressions

For XML data that is stored object-relationally, Oracle XML DB can rewrite SQL
statements that contain XQuery and XPath expressions to purely relational SQL
statements, which are then processed in an optimal manner. In this way, Oracle

XML DB insulates the database optimizer from needing to understand the XQuery and
XPath languages and the XML data model. The database optimizer processes a
rewritten SQL statement the same way it processes other SQL statements. The general
term applied to this rewriting process is XPath rewrite.

The database optimizer can thus derive an execution plan based on conventional
relational algebra. This in turn means that Oracle XML DB can leverage all of the
features of the database, and ensure that SQL statements containing XQuery and
XPath expressions are executed in a highly performant and efficient manner. There is
little overhead with this rewriting, and Oracle XML DB executes XQuery-based and
XPath-based queries at near-relational speed, while preserving the XML abstraction.

When Can XPath Rewrite Occur?

XPath rewrite is possible when all of the following conditions are met:

= An XMLType column or table uses structured storage techniques to provide the
underlying storage model.

= An XMLType column or table is associated with a registered XML schema.

s A SQL statement contains SQL /XML functions or XMLType methods that use
XPath expressions to refer to one or more nodes within a set of XML documents.

s The nodes referenced by an XPath expression can be mapped, using the XML
schema, to attributes of the underlying SQL object model.

What is the XPath-Rewrite Process?
XPath rewrite performs the following tasks:

1. Identify the set of XPath expressions included in the SQL statement.

2. Translate each XPath expression into an object relational SQL expression that
references the tables, types, and attributes of the underlying SQL: 1999 object
model.

3. Rewrite the original SQL statement into an equivalent object relational SQL
statement.

Introduction to Oracle XML DB 1-21



Oracle XML DB Benefits

4. Pass the new SQL statement to the database optimizer for plan generation and
query execution.

In certain cases, XPath rewrite is not possible. This normally occurs when there is no
SQL equivalent of the XPath expression. In this situation, Oracle XML DB performs a
functional evaluation of the XPath expressions.

In general, functional evaluation of a SQL statement is more expensive than XPath
rewrite, particularly if the number of documents to be processed is large. The
advantage of functional evaluation is that it is always possible, regardless of whether
the XMLType data is stored using structured storage and regardless of the complexity
of the XPath expression.

Understanding the concept of XPath rewrite, and the conditions under which it can
take place, is a key step in developing Oracle XML DB applications that deliver the
required levels of scalability and performance.

See Also: Chapter 8, "XPath Rewrite for Structured Storage"

Oracle XML DB Benefits

This section describes several benefits of using Oracle XML DB. Figure 1-6 presents an
overview.

1-22 Oracle XML DB Developer's Guide



Oracle XML DB Benefits

Figure 1-6 Oracle XML DB Benefits

Oracle
XML DB

. Faster Stor n Helps Also Handles
Unifies Data R;figvaﬁ gf%g:n?pgx Integrate non-XML Data
and Content XML Documents Applications with XMLType
Views
— Enhanced native Higher performance XMLType views E Facilitates migrating of
database support for of XML operations over local or remote legacy and non-XML to
XML ) . sources XML data
Higher scalability
— Stores and manages of XML operations Connectivity to other
structured, unstructured, databases, files, ...
and semi-structured data Uniform SQL / XML
— Transparent XML and SQL queries over data
interoperability integrated from

multiple sources
— Exploits database features:

—

— indexing, searching
— updating, transaction processing
— manages constraints

— multiple data views
— speeds up XML storage, retrieval

— supports standards for storing,
modifying, retrieving data

— Exploits XML features:

structure and storage independence
facilitates presentation and data display
facilitates B2B data exchange

Unifying Data and Content

Most application data and Web content is stored in a relational database, a file system,
or both. XML data is often used for data exchange, and it can be generated from a
relational database or a file system. As the volume of XML data exchanged grows, the
cost of regenerating this data grows, and these storage methods become less effective
at accommodating XML content.

Introduction to Oracle XML DB 1-23



Oracle XML DB Benefits

Figure 1-7 Unifying Data and Content: Some Common XML Architectures

Non-Native XML Processing

Applications

Application Server

XML Processing and
Repository Layer

File
System

RDBMS

Structured Data
and Metadata

Multimedia and
Document Content

Separate Data and Content Servers Oracle XML DB

Applications Applications
Application Server Oracle
Application
Server
L —
XML RDBMS Oracle
Repository XML DB

Multimedia and
Document Content,
Structured Data,
XML, Metadata

Multimedia, Document Structured Data
Content and XML,

Metadata

Organizations often manage their structured data and unstructured data differently:

= Unstructured data, in tables, makes document access transparent and table access

complex.

= Structured data, often in binary large objects (such as in BLOB instances), makes
access more complex and table access transparent.

With Oracle XML DB, you can store and manage data that is structured, unstructured,
and semi-structured using a standard data model and standard SQL and XML. You
can perform SQL operations on XML documents and XML operations on
object-relational (such as table) data.

Exploiting Database Capabilities
Oracle Database has the following key database capabilities for working with XML:

= Indexing and search — Applications use queries such as "find all the product
definitions created between March and April 2002", a query that is typically
supported by a B-tree index on a date column. Oracle XML DB can enable efficient
structured searches on XML data, saving content-management vendors the need
to build proprietary query APIs to handle such queries.

See Also:

s Chapter 4, "XMLType Operations"
»  Chapter 12, "Full-Text Search Over XML Data"
»  Chapter 18, "Generating XML Data from the Database"

»  Updates and transaction processing — Commercial relational databases use fast
updates of subparts of records, with minimal contention between users trying to

1-24 Oracle XML DB Developer's Guide



Oracle XML DB Benefits

update. As traditionally document-centric data participate in collaborative
environments through XML, this requirement becomes more important. File or
CLOB storage cannot provide the granular concurrency control that Oracle
XML DB does.

See Also: Chapter 4, "XMLIype Operations"

=  Managing relationships — Data with any structure typically has foreign-key
constraints. XML data stores generally lack this feature, so you must implement
any constraints in application code. Oracle XML DB enables you to constrain XML
data according to XML schema definitions, and hence achieve control over
relationships that structured data has always enjoyed.

See Also:

»  Chapter 7, "XML Schema Storage and Query: Basic"

s The purchase-order examples in Chapter 4, "XMLIype
Operations”

= Multiple views of data — Most enterprise applications need to group data together
in different ways for different modules. This is why relational views are
necessary—to allow for these multiple ways to combine data. By allowing views
on XML, Oracle XML DB creates different logical abstractions on XML for, say,
consumption by different types of applications.

See Also: Chapter 19, "XMLType Views"

s Performance and scalability — Users expect data storage, retrieval, and query to be
fast. Loading a file or CLOB value, and parsing, are typically slower than relational
data access. Oracle XML DB dramatically speeds up XML storage and retrieval.

See Also:
»  Chapter 2, "Getting Started with Oracle XML DB"
= Chapter 3, "Using Oracle XML DB"

= Ease of development — Databases are foremost an application platform that
provides standard, easy ways to manipulate, transform, and modify individual
data elements. While typical XML parsers give standard read access to XML data
they do not provide an easy way to modify and store individual XML elements.
Oracle XML DB supports several standard ways to store, modify, and retrieve
data. These include XML Schema, XQuery, XPath, DOM, and Java.

See Also:
»  Chapter 15, "Java DOM API for XMLType"

»  Chapter 25, "Accessing the Repository using RESOURCE_
VIEW and PATH_VIEW"

»  Chapter 26, "Accessing the Repository using PL/SQL"
Exploiting XML Capabilities

If the drawbacks of XML file storage force you to break down XML into database
tables and columns, there are several XML advantages you have left:

Introduction to Oracle XML DB 1-25



Oracle XML DB Benefits

Structure independence: The open content model of XML cannot be captured
easily in the pure tables-and-columns world. XML schemas allow global element
declarations, not just scoped to a container. Hence you can find a particular data
item regardless of where in the XML document it moves to as your application
evolves.

See Also: Chapter 7, "XML Schema Storage and Query: Basic"

Storage independence: When you use relational design, your client programs must
know where your data is stored, in what format, what table, and what the
relationships are among those tables. XML Type enables you to write applications
without that knowledge and lets database administrators map structured data to
physical table and column storage.

See Also:

»  Chapter 7, "XML Schema Storage and Query: Basic"
s Chapter 21, "Accessing Oracle XML DB Repository Data"

Ease of presentation: XML is understood natively by Web browsers, many popular
desktop applications, and most Internet applications. Relational data is generally
not accessible directly from applications. Additional programming is required to
make relational data accessible to standard clients. Oracle XML DB stores data as
XML and makes it available as XML outside the database. No extra programming
is required to display database content.

See Also:

»  Chapter 11, "Transforming and Validating XMLType Data".
»  Chapter 18, "Generating XML Data from the Database".

»  Chapter 19, "XMLType Views".

Ease of interchange — XML is the language of choice in business-to-business (B2B)
data exchange. If you are forced to store XML in an arbitrary table structure, you
are using some kind of proprietary translation. Whenever you translate a
language, information is lost and interchange suffers. By natively understanding
XML and providing DOM fidelity in the storage/retrieval process, Oracle XML DB
enables a clean interchange.

See Also:
»  Chapter 11, "Transforming and Validating XMLType Data"
»  Chapter 19, "XMLType Views"

Efficient Storage and Retrieval of Complex XML Documents

Users today face a performance barrier when storing and retrieving complex, large, or
many XML documents. Oracle XML DB provides high performance and scalability for
XML operations. The major performance features are:

Native XMLType. See Chapter 4, "XMLType Operations".
A lazily evaluated virtual DOM. See Chapter 13, "PL/SQL APIs for XMLType".

XQuery, XPath, and XSLT support. This is described in several chapters, including
Chapter 4, "XMLType Operations", Chapter 11, "Transforming and Validating
XMLTIype Data", and Chapter 5, "Using XQuery with Oracle XML DB".

1-26 Oracle XML DB Developer's Guide



Standards Supported by Oracle XML DB

= XML schema caching support. See Chapter 7, "XML Schema Storage and Query:
Basic".

= Indexing, both full-text and XML. See Chapter 6, "Indexing XMLType Data" and
Chapter 12, "Full-Text Search Over XML Data".

= A hierarchical index over Oracle XML DB Repository. See Chapter 21, "Accessing
Oracle XML DB Repository Data".

Use XMLType Views If Your Data Is Not XML

XMLType views provide a way for you wrap existing relational and object-relational
data in XML format. This is especially useful if, for example, your legacy data is not in
XML format but you must migrate it to XML format. Using XMLType views, you need
not alter your application code.

See Also: Chapter 19, "XMLType Views"

To use XMLType views, you must first register an XML schema with annotations that
represent a bidirectional mapping between XML Schema data types and either SQL
data types or binary XML encoding types. You can then create an XMLType view
conforming to this mapping, by providing an underlying query that constructs
instances of the appropriate types.

Search XML Data using Oracle Text

Oracle Database enables special indexing on XML data, including Oracle Text indexes
for section searching, SQL functions to process XML data, aggregation of XML data,
and special optimization of queries involving XML data. Oracle SQL functions
hasPath and inPath are designed to optimize XML data searches where you can
search within XML text for substring matches.

See Also:

»  Chapter 12, "Full-Text Search Over XML Data"

= "Oracle Text Indexes on XML Data" on page 6-46
»  Oracle Text Application Developer’s Guide

»  Oracle Text Reference

Build Messaging Applications using Oracle Streams Advanced Queuing

Oracle Streams Advanced Queuing supports the use of:
= XMLType as a message/payload type, including XML schema-based XMLType

= Queuing or dequeuing of XMLType messages

See Also:

»  Oracle Streams Advanced Queuing User’s Guide for information
about using XMLType with Oracle Streams Advanced Queuing

»  Chapter 37, "Exchanging XML Data using Oracle Streams AQ"

Standards Supported by Oracle XML DB

Oracle XML DB supports all major XML, SQL, Java, and Internet standards:

Introduction to Oracle XML DB  1-27



Standards Supported by Oracle XML DB

s W3C XML Schema 1.0 Recommendation. You can register XML schemas, validate
stored XML content against XML schemas, or constrain XML stored in the server
to XML schemas.

s W3C XQuery 1.0 Recommendation and W3C XPath 2.0 Recommendation. You can
search or traverse XML stored inside the database using XQuery and XPath, either
from HTTP(S) requests or from SQL.

=  SQL/XML.
= Java Database Connectivity (JDBC) API. JDBC access to XML is available for Java
programmers.

s W3C XSL 1.0 Recommendation. You can transform XML documents at the server
using XSLT.

s W3C DOM Recommendation Levels 1.0 and 2.0 Core. You can retrieve XML stored
in the server as an XML DOM, for dynamic access.

= Protocol support. You can store or retrieve XML data from Oracle XML DB using
Oracle Net or standard protocols such as HTTP(S), FIP, and IETF WebDAV.

» Java Servlet version 2.2, (except: the servlet WAR file, web. xm1, is not supported
in its entirety; only one ServletContext; one web-app are currently supported;
and stateful servlets are not supported).

s Web services: SOAP 1.1. You can access XML stored in the server from SOAP
requests. You can build, publish, or find Web Services using Oracle XML DB and
Oracle9iAS, using WSDL and UDDI. You can use Oracle Streams Advanced
Queuing IDAP, the SOAP specification for queuing operations, on XML stored in
Oracle Database.

= W3C XML Linking Language (Xlink) 1.0 Recommendation. You can define various
types of links between XML documents.

= W3C XML Pointer Language (XPointer) Recommendation and XPointer
Framework. You can include the content of multiple XML documents or fragments
in a single infoset.

See Also:

s "SQL/XML Standard Functions" on page 1-20 for more
information about the SQL /XML functions

»  Oracle Database SQL Language Reference for information about
Oracle support for the SQL /XML standard

»  Chapter 23, "Using XLink and XInclude with Oracle XML DB" for
more information about XLink and XPointer support

»  Chapter 28, "Accessing the Repository using Protocols" for more
information about protocol support

»  Chapter 32, "Writing Oracle XML DB Applications in Java" for
information about using the Java servlet

»  Chapter 37, "Exchanging XML Data using Oracle Streams AQ"
and Oracle Streams Advanced Queuing User’s Guide for information
about using SOAP

1-28 Oracle XML DB Developer's Guide



Further Oracle XML DB Case Studies and Demonstrations

Oracle XML DB Technical Support

Besides your regular channels of support through your customer representative or
consultant, technical support for Oracle Database XML-enabled technologies is
available free through the Discussion Forums section of Oracle Technology Network
(OTN):

http://forums.oracle.com/forums/category.jspa?categoryID=51

Oracle XML DB Examples Used in This Manual

This manual contains examples that illustrate the use of Oracle XML DB and
XMLType. The examples are based on various database schemas, sample XML
documents, and sample XML schemas.

See Also: Appendix A, "Oracle-Supplied XML Schemas and
Examples"

Further Oracle XML DB Case Studies and Demonstrations

Visit OTN to view Oracle XML DB examples, white papers, case studies, and
demonstrations:

http://www.oracle.com/technetwork/database-features/xmldb/overvi
ew/index.html

Comprehensive XML classes on how to use Oracle XML DB are also available. See the
Oracle University link on OTN.

Several detailed Oracle XML DB case studies are available on OTN and include the
following:

= Oracle XML DB Downloadable Demonstration. This detailed demonstration
illustrates how to use many Oracle XML DB features. Parts of this demonstration
are also included in Chapter 3, "Using Oracle XML DB".

s SAXLoader Application. This demonstrates an efficient way to break up large files
containing multiple XML documents outside the database and insert them into the
database as a set of separate documents. This is provided as a standalone and a
Web-based application.

= Oracle XML DB Utilities package. This highlights the subprograms provided with
the XDB_Utilities package. These subprograms operate on BFILE values,
CLOB values, DOM, and Oracle XML DB Resource APIs. With this package, you
can perform basic Oracle XML DB foldering operations, read and load XML files
into a database, and perform basic DOM operations through PL/SQL.

»  Card Payment Gateway Application. This application uses Oracle XML DB to
store all your data in XML format and enables access to the resulting XML data
using SQL. It illustrates how a credit card company can store its account and
transaction data in the database and also maintain XML fidelity.

= Survey Application. This application determines what members want from Oracle
products. OTN posts the online surveys and studies the responses. This Oracle
XML DB application demonstrates how a company can create dynamic, interactive
HTML forms, deploy them to the Internet, store the responses as XML, and
analyze them using the XML enabled Oracle Database.

Introduction to Oracle XML DB 1-29



Further Oracle XML DB Case Studies and Demonstrations

1-30 Oracle XML DB Developer's Guide



2

Getting Started with Oracle XML DB

This chapter provides some preliminary design criteria for consideration when
planning your Oracle XML DB solution.

This chapter contains these topics:

s Oracle XML DB Installation

= Oracle XML DB Use Cases

= Application Design Considerations for Oracle XML DB
s Oracle XML DB Performance

Oracle XML DB Installation

Oracle XML DB is installed automatically in the following situations:

» If Database Configuration Assistant (DBCA) is used to build Oracle Database
using the general-purpose template

s If you use SQL script catgm to install Oracle Database

You can determine whether or not Oracle XML DB is already installed. If it is installed,
then the following are true:

= Database schema (user account) XDB exists. To check that, run this query:

SELECT * FROM ALL_USERS;

s View RESOURCE_VIEW exists. To check that, use this command:

DESCRIBE RESOURCE_VIEW

See Also:

»  Chapter 34, "Administering Oracle XML DB" for information
about installing and uninstalling Oracle XML DB manually

»  Oracle Database 2 Day + Security Guide for information about
database schema XDB

Oracle XML DB Use Cases

Oracle XML DB is suited for any application where some or all of the data processed
by the application is represented using XML. Oracle XML DB provides for
high-performance database ingestion, storage, processing and retrieval of XML data. It
also lets you quickly and easily generate XML from existing relational data.

Applications for which Oracle XML DB is particularly suited include the following:

Getting Started with Oracle XML DB  2-1



Application Design Considerations for Oracle XML DB

= Business-to-business (B2B) and application-to-application (A2A) integration

= Internet

s Content-management

s Messaging

= Web Services

A typical Oracle XML DB application has one or more of the following characteristics:
= Large numbers of XML documents must be ingested or generated

s Large XML documents must be processed or generated

»  High-performance searching is needed, both within a document and across large
collections of documents

= High levels of security are needed
= Fine-grained security is needed

= Data processing must use XML documents, and data must be stored in relational
tables

= Programming must support open standards such as SQL, XML, XQuery, XPath,
and XSL

= Information must be accessed using standard Internet protocols such as FIP,
HTTP(S)/WebDAYV, and Java Database Connectivity (JDBC)

= XML data must be queried from SQL
= Analytic capabilities must be applied to XML data
= XML documents must be validated against an XML schema

Oracle XML DB lets you fine-tune how XML documents are stored and processed in
Oracle Database. Depending on the nature of the application, XML storage must have
at least one of the following features

= High performance ingestion and retrieval of XML documents
= High performance indexing and searching of XML documents
= Ability to update sections of an XML document

= Management of structured or unstructured XML documents

Application Design Considerations for Oracle XML DB

This section mentions some preliminary design criteria that you can consider when
planning your Oracle XML DB application.

Structure of Your Data

Is your data be highly structured (mostly XML), semi-structured, or mostly
unstructured? If highly structured, are your tables XML schema-based or
non-schema-based?

If your XML data is not XML schema-based, then, regardless of how structured it is,
you can store it in an XMLType table or view as binary XML or as a CLOB instance, or
you can store it as a file in an Oracle XML DB Repository folder.

2-2 Oracle XML DB Developer's Guide



Application Design Considerations for Oracle XML DB

If your XML data is XML schema-based then you can use unstructured, structured
(object-relational), or binary XML storage for its structured parts. For the unstructured
parts, you have the same options as for data that is not XML schema-based.

See Also: Chapter 3, "Using Oracle XML DB"

Oracle XML DB Repository Access

This section pertains to data that is stored as resources in Oracle XML DB Repository.

How do other applications and users need to access your XML and other data? How
secure must the access be? Do you need versioning?

There are two main repository access methods:

= Navigation-based access or path-based access. This is suitable for both
content/document and data oriented applications. Oracle XML DB provides the
following languages and access APlIs:

- SQL access through resource and path views. See Chapter 25, "Accessing the
Repository using RESOURCE_VIEW and PATH_VIEW".

- PL/SQL access through DBMS_XDB. See Chapter 26, "Accessing the Repository
using PL/SQL".

—  Protocol-based access using HTTP(S)/WebDAYV or FTP, most suited to
content-oriented applications. See Chapter 28, "Accessing the Repository using
Protocols".

= Query-based access. This can be most suited to data oriented applications. Oracle
XML DB provides access using SQL queries through the following APIs:

- Java access (through JDBC). See Java DOM API for XMLType.
- PL/SQL access. See Chapter 13, "PL/SQL APIs for XMLType".

These options for accessing repository data are also discussed in Chapter 21,
"Accessing Oracle XML DB Repository Data".

You can also consider the following access criteria:
= What levels of security do you need? See Chapter 27, "Repository Access Control".

»  What kind of indexing best suits your application? Do you need to use Oracle Text
indexing and querying? See Chapter 4, "XMLIype Operations", Chapter 6,
"Indexing XMLType Data", and Chapter 12, "Full-Text Search Over XML Data".

= Do you need to version the data? If yes, see Chapter 24, "Managing Resource
Versions".

Application Language
In which languages do you program your application?
You can program your Oracle XML DB applications in the following languages:

= Java (JDBC, Java Servlets)

See Also:
»  Chapter 15, "Java DOM API for XMLType"
»  Chapter 32, "Writing Oracle XML DB Applications in Java"

= PL/SQL

Getting Started with Oracle XML DB  2-3



Application Design Considerations for Oracle XML DB

See Also:

s Chapter 13, "PL/SQL APIs for XMLIype"

s Chapter 26, "Accessing the Repository using PL/SQL"
= "APIs for XML" on page 1-4

Processing

Do you need to generate XML data? See Chapter 18, "Generating XML Data from the
Database".

How often are XML documents accessed, updated, and manipulated? Do you need to
update fragments or whole documents?

Do you need to transform XML data to HTML, WML, or other languages? If so, how
does your application do this? See Chapter 11, "Transforming and Validating XMLType
Data".

Must your application be primarily database-resident or must it work in both the
database and middle tier?

Is your application data-centric, document-centric (content-centric), or both?

The following processing options are available and should be considered when
designing your Oracle XML DB application:

= XSLT. Do you need to transform the XML data to HTML, WML, or other
languages, and, if so, how does your application transform the XML data? While
storing XML documents in Oracle XML DB, you can optionally ensure that their
structure complies with (validates against) specific XML schemas. See Chapter 11,
"Transforming and Validating XMLIype Data".

= DOM fidelity, document fidelity. Use unstructured storage to preserve document
fidelity. Use binary XML or structured storage for XML schema-based data to
preserve DOM fidelity. See Chapter 13, "PL/SQL APIs for XMLType" and "DOM
Fidelity" on page 7-16.

= XPath searching. You can use XPath syntax embedded in a SQL statement or as
part of an HTTP(S) request to query XML content in the database. See Chapter 4,
"XMLType Operations", Chapter 12, "Full-Text Search Over XML Data",
Chapter 21, "Accessing Oracle XML DB Repository Data", and Chapter 25,
"Accessing the Repository using RESOURCE_VIEW and PATH_VIEW".

= XML Generation and XMLType views. Do you need to generate or regenerate XML
data? If yes, see Chapter 18, "Generating XML Data from the Database".

How often are XML documents accessed, updated, and manipulated? See Chapter 4,
"XMLType Operations" and Chapter 25, "Accessing the Repository using RESOURCE_
VIEW and PATH_VIEW".

Do you need to update fragments or whole documents? You can use XPath
expressions to specify individual elements and attributes of your document during
updates, without rewriting the entire document. This is more efficient, especially for
large XML documents. Chapter 7, "XML Schema Storage and Query: Basic".

Is your application data-centric, document- and content-centric, or integrated (is both
data- and document-centric)? See Chapter 3, "Using Oracle XML DB".

2-4 Oracle XML DB Developer's Guide



Application Design Considerations for Oracle XML DB

Messaging

Storage

Does your application exchange XML data with other applications across gateways?
Do you need Oracle Streams Advanced Queuing (AQ) or SOAP compliance? See
Chapter 37, "Exchanging XML Data using Oracle Streams AQ".

Advanced Queuing (AQ) supports XML and XMLType applications. You can create
queues with payloads that contain XMLType attributes. These can be used for
transmitting and storing messages that contain XML documents. By defining Oracle
Database objects with XMLType attributes, you can do the following:

= Store more than one type of XML document in the same queue. The documents
are stored internally as CLOB values.

= Selectively dequeue messages with XMLType attributes using an XPath or XQuery
expression.

s Define rule-based subscribers that query message content using an XPath or
XQuery expression.

»  Define transformations to convert Oracle Database objects to XMLType.

See Also:
s Chapter 37, "Exchanging XML Data using Oracle Streams AQ"

»  Oracle Streams Advanced Queuing User’s Guide

How and where do you store your relational data, XML data, XML schemas, and so
on?

Note: The choices you make for data structure, access, language,
and processing are typically interdependent, but they are not
dependent on the storage model you choose.

Figure 2-1 shows the Oracle XML DB storage options for XML Type tables and views.

Getting Started with Oracle XML DB  2-5



Oracle XML DB Performance

Figure 2—-1 Oracle XML DB Storage Options for XML Data

Oracle XML DB Data
Storage Options

Your Storage Option Affects Performance
and Data Fidelity

XMLType XMLType +— If you have existing
Tables Views relational data use
XMLType Views

Can define the
views using:
B)i(rl':,?{y Unstructured Structured Hybrid gglér;)t(mlg ?;’:)?st
Storage Storage Storage Storage |
Relational
Tables
Object Object Object
Tables Views Constructors
I
Relational

Tables

If you have existing relational data, you can access it as XML data by creating
XMLType views over it. You can use the following to define the XMLType views:

s SQL/XML functions. See Chapter 18, "Generating XML Data from the Database"
and Chapter 5, "Using XQuery with Oracle XML DB".

= Object types: object tables, object constructors, and object views.

Regardless of which storage options you choose for your application, Oracle XML DB
provides the same functionality. Though the storage model you use can affect your
application performance and XML data fidelity, it is totally independent of all of the
following:

= How, and how often, you query or update your data.

s How you access your data. This is determined only by your application processing
requirements.

= What language(s) your application uses. This is determined only by your
application processing requirements.

See Also:
= "XMLIype Storage Models" on page 1-14
= "DOM Fidelity" on page 7-16

Oracle XML DB Performance

One objection to using XML to represent data is that it generates higher overhead than
other representations. Oracle XML DB incorporates several features specifically
designed to address this issue by significantly improving the performance of XML
processing. These are described in the following sections:

= XML Storage Requirements

2-6 Oracle XML DB Developer's Guide



Oracle XML DB Performance

= XML Memory Management

= XML Parsing Optimizations

= Node-Searching Optimizations

s XML Schema Optimizations

= Load Balancing Through Cached XML Schema

= Reduced Bottlenecks From Code That Is Not Native

= Reduced Java Type Conversion Bottlenecks

XML Storage Requirements

Data represented in XML and stored in a text file averages three times the size of the
same data in a Java object or in relational tables. There are two main reasons for this:

s Tag names (metadata describing the data) and white space (formatting characters)
take up a significant amount of space in the document, particularly for highly
structured, data-centric XML.

s All data in an XML file is represented in human readable (string) format.

The string representation of a numeric value needs about twice as many bytes as the
native (binary) representation. When XML documents are stored in Oracle XML DB
using structured or binary XML storage, the storage process discards all tags and
white space in the document.

The amount of space saved by this optimization depends on the ratio of tag names to
data, and the number of collections in the document. For highly-structured,
data-centric XML data, the savings can be significant. When a document is printed, or
when node-based operations such as XPath evaluation take place, Oracle XML DB
uses the information contained in the associated XML schema to dynamically
reconstruct any necessary tag information.

XML Memory Management

Document Object Model (DOM) is the dominant programming model for XML
documents. DOM APIs are easy to use but the DOM Tree that underpins them is
expensive to generate, in terms of memory. A typical DOM implementation maintains
approximately 80 to 120 bytes of system overhead for each node in the DOM tree. For
highly structured data, the DOM tree can require 10 to 20 times more memory than the
document on which it is based.

A conventional DOM implementation requires the entire contents of an XML
document to be loaded into the DOM tree before any operations can take place. If an
application only needs to process a small percentage of the nodes in the document, this
is extremely inefficient in terms of memory and processing overhead. The alternative
Simple API for XML (SAX) approach reduces the amount of memory required to
process an XML document, but its disadvantage is that it only allows linear processing
of nodes in the XML document.

See Also:
s http://www.w3.org/DOM/ for information about DOM

s http://www.saxproject.org/ for information about SAX

Getting Started with Oracle XML DB  2-7



Oracle XML DB Performance

Use of XOBs Reduces Memory Overhead for XML Schema-Based Documents

Oracle XML DB reduces memory overhead associated with DOM programming by
managing XML schema-based XML documents using an internal structure in dynamic
memory called an XML Object (XOB). A XOB is much smaller than the equivalent
DOM since it does not duplicate information like tag names and node types, that can
easily be obtained from the associated XML schema. Oracle XML DB automatically
uses a XOB whenever an application works with the contents of a schema-based
XMLType. The use of the XOB is transparent to you. It is hidden behind the XML Type
data type and the C, PL/SQL, and Java APIs.

XOB Uses a Lazily-Loaded Virtual DOM

The XOB can also reduce the amount of memory required to work with an XML
document using the Lazily-Loaded Virtual DOM feature. This lets Oracle XML DB
defer loading the dynamic memory representation of nodes that are part of
sub-elements or collection until code attempts to operate on a node in that object.
Consequently, if an application only operates on a few nodes in a document, only
those nodes and their immediate siblings are loaded into memory.

The XOB can only used when an XML document is based on an XML schema. If the
contents of the XML document are not based on an XML schema, a traditional DOM is
used instead of the XOB.

XML Parsing Optimizations

To populate a DOM tree the application must parse the XML document. The process of
creating a DOM tree from an XML file is very CPU- intensive. In a typical DOM-based
application, where the XML documents are stored as text, every document has to be
parsed and loaded into the DOM tree before the application can work with it. If the
contents of the DOM tree are updated the entire tree must be serialized back into a text
format and written out to disk.

Oracle XML DB eliminates the need to parse documents over and over again. No
parsing is needed when an XML document is loaded from disk into memory, if the
document is stored as structured or binary XML storage. Oracle XML DB maps
directly between the format on disk and the format in dynamic memory using
information derived from the associated XML schema. When changes are made to
XML schema-based data, Oracle XML DB is able to write just the updated data back to
disk. When XML data is not based on an XML schema, a traditional DOM is used
instead.

Node-Searching Optimizations

Most DOM implementations use string comparisons when searching for a particular
node in the DOM tree. Even a simple search of a DOM tree can require hundreds or
thousands of instruction cycles. Searching for a node in a XOB is much more efficient
than searching for a node in a DOM. A XOB is based on a computed offset model,
similar to a C/C++ object, and uses dynamic hashtables rather than string
comparisons to perform node searches.

XML Schema Optimizations

Making use of the powerful features associated with XML schema in a conventional
XML application can generate significant amounts of additional overhead. For
example, before an XML document can be validated against an XML schema, the
schema itself must be located, parsed, and validated.

2-8 Oracle XML DB Developer's Guide



Oracle XML DB Performance

Oracle XML DB minimizes the overhead associated with using XML schema. When an
XML schema is registered with the database, it is loaded in the Oracle XML DB schema
cache, together with all of the metadata required to map between the textual, XOB and
on- disk representations of the data. After the XML schema has been registered with
the database no additional parsing or validation of the XML schema is required before
it can be used. The schema cache is shared by all users of the database. Whenever an
Oracle XML DB operation requires information contained in the XML schema, it can
access the required information directly from the cache.

Load Balancing Through Cached XML Schema

Some operations, such as performing a full schema validation, or serializing an XML
document back into text form, can still require significant memory and CPU resources.
Oracle XML DB let these operations be off-loaded to the client or middle tier processor.
Both Oracle Call Interface (OCI) interface and the OCI driver for JDBC allow the XOB
to be managed by the client.

The cached representation of the XML schema can also be downloaded to the client.
This lets operations such as XML printing, and XML schema validation be performed
using client or middle tier resources, rather than server resources.

Reduced Bottlenecks From Code That Is Not Native

Another bottleneck for XML-based Java applications happens when parsing an XML
file. Even natively compiled or JIT compiled Java performs XML parsing operations
twice as slowly compared to using native C language. One of the major performance
bottlenecks in implementing XML applications is the cost of transforming data in an
XML document between text, Java, and native server representations. The cost of
performing these transformations is proportional to the size and complexity of the
XML file and becomes severe even in moderately sized files.

Oracle XML DB addresses these issues by implementing all of the Java and PL/SQL
interfaces as thin facades over a native implementation in the C language. Java, C,
PL/SQL, and SQL all use the same underlying implementation. This provides for
language-neutral XML support and higher performance XML parsing and DOM
processing.

Reduced Java Type Conversion Bottlenecks

One of the biggest bottlenecks when using Java and XML is with type conversions.
Internally Java uses UCS-2 to represent character data. Most XML files and databases
do not contain UCS-2 encoded data. All data contained in an XML file must be
converted from 8-Bit or UTF-8 encoding to UCS-2 encoding before it can be
manipulated in a Java program.

Oracle XML DB addresses these problems with lazy type conversions. With lazy type
conversions, the content of a node is not converted into the format required by Java
until the application attempts to access the contents of the node. Data remains in the
internal representation till the last moment. Avoiding unnecessary type conversions
can result in significant performance improvements when an application only needs to
access a few nodes in an XML document.

Consider a JSP that loads a name from the Oracle Database and prints it out in the
generated HTML output. Typical JSP implementations read the name from the
database (that probably contains data in the ASCII or ISO8859 character sets), convert
the data to UCS-2, and return it to Java as a string. The JSP would not look at the string
content, but only print it out after printing the enclosing HTML, probably converting

Getting Started with Oracle XML DB  2-9



Oracle XML DB Performance

back to the same ASCII or ISO8859 for the client browser. Oracle XML DB provides a
write interface on XMLType so that any element can write itself directly to a stream
(such as a ServletOutputStream) without conversion through Java character sets.
Figure 2-2 shows the Oracle XML DB Application Program Interface (API) stack.

Figure 2-2 Oracle XML DB Application Program Interface (API) Stack

OCI-Based Application Server-Based Application
C Java Java PL/SQL
XMLType XMLType XMLType XMLType
and DOM and DOM and DOM and DOM
t
In Memory
Format
Schema-Based Non-Schema-Based
XML XML
(XOB) (DOM)

T

On Disk
Format

XML Structured Binary Unstructured
Schema Storage XML Storage
Cache 9 Storage g

2-10 Oracle XML DB Developer's Guide



3

Using Oracle XML DB

This chapter is an overview of how to use Oracle XML DB. The examples presented
here illustrate techniques for accessing and managing XML content in purchase-order
documents. Purchase orders are highly structured documents, but you can use the
techniques shown here to also work with XML documents that have little structure.

This chapter contains these topics:

Storing XML Data as XMLIype

Creating XMLIype Tables and Columns

Partitioning or Constraining Binary XML Data using Virtual Columns
Loading XML Content into Oracle XML DB

Character Sets of XML Documents

Overview of the W3C XML Schema Recommendation

Using XML Schema with Oracle XML DB

Identifying XML Schema Instance Documents

Enforcing XML Data Integrity using the Database

DML Operations on XML Content using Oracle XML DB

Querying XML Content Stored in Oracle XML DB

Accessing XML Data in Oracle XML DB using Relational Views
Updating XML Content Stored in Oracle XML DB

Namespace Support in Oracle XML DB

How Oracle XML DB Processes XMLType Methods and SQL Functions
Generating XML Data from Relational Data

XSL Transformation and Oracle XML DB

Using Oracle XML DB Repository

Viewing Relational Data as XML From a Browser

XSL Transformation using DBUTri Servlet

Storing XML Data as XMLType

Before the introduction of Oracle XML DB, there were two ways to store XML content
in Oracle Database:

Using Oracle XML DB 3-1



Storing XML Data as XMLType

s Use Oracle XML Developer's Kit (XDK) to parse the XML document outside
Oracle Database, and store the extracted XML data as rows in one or more tables
in the database.

= Store the XML document in Oracle Database using a Character Large Object
(cLOB), Binary Large Object (BLOB), Binary File (BFILE), or VARCHAR column.

In both cases, Oracle Database is unaware that it is managing XML content.

Oracle XML DB and the XML Type abstract data type make Oracle Database
XML-aware. Storing XML data as an XMLType column or table lets the database
perform XML-specific operations on the content. This includes XML validation and
optimization. XML Type storage allows highly efficient processing of XML content in
the database.

What is XMLType?

XMLType is an abstract data type for native handling of XML data in the database.
s XMLType has built-in methods to create, extract, and index database XML data.
s XMLType provides SQL access to XML data.

= XMLType functionality is also available through a set of Application Program
Interfaces (APIs) provided in PL/SQL and Java. XMLType can be used in PL/SQL
stored procedures for parameters, return values, and variables.

Using XMLType, SQL developers can leverage the power of the relational database
while working in the context of XML. XML developers can leverage the power of XML
standards while working in the context of a relational database.

XMLType can be used as the data type of columns in tables and views. XMLType
variables can be used in PL/SQL stored procedures as parameters and return values.
You can also use XMLType in SQL, PL/SQL, C, Java (through JDBC), and Oracle Data
Provider for NET (ODP.NET).

The XMLType API provides several useful methods that operate on XML content. For
example, method extract () extracts one or more nodes from an XML Type instance.

Oracle XML DB functionality is based on the Oracle XML Developer's Kit C
implementations of the relevant XML standards such as XML Parser, XML DOM, and
XML Schema Validator.

See Also:

= "XMLIype Data Type" on page 1-12

= "XMLIype Storage Models" on page 1-14 for the available
XMLType storage options and their relative advantages

Benefits of XMLType Data Type and API

The XMLType data type and application programming interface (API) enable SQL
operations on XML content and XML operations on SQL content:

= Versatile API - XMLType has a versatile API for application development that
includes built-in functions, indexing, and navigation support.

s XMLType and SQL - You can use XMLType in SQL statements, combined with
other data types. For example, you can query XMLType columns and join the
result of the extraction with a relational column. Oracle Database determines an
optimal way to run such queries.

3-2 Oracle XML DB Developer's Guide



Partitioning or Constraining Binary XML Data using Virtual Columns

s Indexing — You can created several kinds of indexes to improve the performance of
queries on XML data.

- For structured storage of XMLType data, you can create B-tree indexes and
function-based indexes on the object-relational tables that underlie XML Type
tables and columns. Create function-based indexes only on scalar data, that is,
columns that represent singleton elements or attributes.

- For unstructured and binary XML storage of XMLType data, you can create an
XMLIndex index, which specifically targets the XML structure of a document.

- You can index the textual content of XML data with an Oracle Text CONTEXT
index, for use in full-text search. This applies to all XMLType storage models.

Creating XMLType Tables and Columns

XMLType is an abstract data type, so it is straightforward to create an XMLType table
or column. The basic CREATE TABLE statement, specifying no storage options and no
XML schema, stores XMLType data as binary XML.!

Example 3-1 creates an XMLType column, and Example 3-2 creates an XMLType table.

Example 3—1 Creating a Table with an XMLType Column
CREATE TABLE mytablel (key column VARCHAR2 (10) PRIMARY KEY, xml_column XMLType) ;

Example 3-2 Creating a Table of XMLType
CREATE TABLE mytable2 OF XMLType;

See Also: "Creating XMLIType Tables and Columns Based on XML
Schemas" on page 7-27

Note: To create an XMLType table in a different database schema
from your own, you must have not only privilege CREATE ANY
TABLE but also privilege CREATE ANY INDEX. This is because a
unique index is created on column OBJECT_ID when you create the
table. Column OBJECT_1ID stores a system-generated object identifier.

Partitioning or Constraining Binary XML Data using Virtual Columns

XML data has its own structure, which, except for object-relational storage of
XMLType, is not reflected directly in database data structure. That is, individual XML
elements and attributes are not mapped to individual database columns or tables.

Therefore, to constrain or partition XML data according to the values of individual
elements or attributes, the standard approach for relational data does not apply.
Instead, you must create virtual columns that represent the XML data of interest, and
then use those virtual columns to define the constraints or partitions that you need.

This approach applies only to XML data that is stored as binary XML. For XML data
that uses unstructured storage, the database has no knowledge of the XML
structure—the data is treated as flat text, but for binary XML storage that structure is

! The XMLType storage model for XML schema-based data is whatever was specified during
registration of the referenced XML schema. If no storage model was specified during
registration, then binary XML storage is used.

Using Oracle XML DB  3-3



Partitioning or Constraining Binary XML Data using Virtual Columns

known. You can exploit this structural knowledge to create virtual columns, which the
database can then use with constraints or partitions.

The technique is as follows:
1. Define virtual columns that correspond to the XML data that you are interested in.
2. Use those columns to partition or constrain the XMLType data as a whole.

You create virtual columns on XMLType data as you would create virtual columns
using any other type of data, but using a slightly different syntax. In particular, you
cannot specify any constraints in association with the column definition.

Because XMLType is an abstract data type, if you create virtual columns on an
XMLType table then those columns are hidden. They do not show up in DESCRIBE
statements, for example. This hiding enables tools that use operations such as
DESCRIBE to function normally and not be misled by the virtual columns.

Note:

= Partitioning of binary XML tables is supported starting with 11g
Release 2 (11.2). It is supported only if the database compatibility
(parameter compatibleinfile init.ora)is 11.2 or higher.

= Range, hash, and list partitioning are supported.

= You can partition an XMLType table using a virtual column. You
cannot partition a relational table that has an XMLType column,
using that column to define virtual columns of XML data.

You create a virtual column based on an XML element or attribute by defining it in
terms of a SQL expression that involves that element or attribute. The column is thus
function-based. You use SQL /XML functions XMLCast and XMLQuery to do this, as
shown in Example 3-3. The XQuery expression argument to function XMLQuery must
be a simple XPath expression that uses only the child and attribute axes.

Example 3-3 Partitioning a Binary XML Table using Virtual Columns

CREATE TABLE po_binaryxml OF XMLType
XMLTYPE STORE AS BINARY XML
VIRTUAL COLUMNS
(DATE_COL AS (XMLCast (XMLQuery ('/PurchaseOrder/@orderDate'
PASSING OBJECT_VALUE RETURNING CONTENT)
AS DATE)))
PARTITION BY RANGE (DATE_COL)
(PARTITION orders2001 VALUES LESS THAN (to_date('01-JAN-2002')),
PARTITION orders2002 VALUES LESS THAN (MAXVALUE));

Example 3-3 partitions an XMLType table using a virtual column, DATE_COL, which
targets the orderDate element in a purchase-order document.

To use a virtual column for partitioning, its data type must be constant. In the case
where the XMLType data in the column or table is mixed, some documents being
encoded using an XML schema and others being encoded without using any schema,
you must cast the functional expression, to ensure that the same data type is used for
all rows in the virtual column.

3-4 Oracle XML DB Developer's Guide



Loading XML Content into Oracle XML DB

Note: For best performance, choose, as the partitioning key, an XPath
expression whose target occurs within 32 K bytes of the beginning of
the XML document.

You define constraints on binary XML data similarly. See Example 3-20 on page 3-35.

See Also:
s "XMLIndex Partitioning and Parallelism" on page 6-34

= "Enforcing Referential Integrity using SQL Constraints" on
page 3-34

»  Oracle Database SQL Language Reference for information about
creating tables with virtual columns

Loading XML Content into Oracle XML DB

You can load XML content into Oracle XML DB using these techniques:

s Table-based loading:
= Loading XML Content using SQL or PL/SQL
s Loading XML Content using Java
s Loading XML Content using C
= Loading Large XML Files that Contain Small XML Documents
= Loading Large XML Files using SQL*Loader

= Path-based repository loading techniques:
s Loading XML Documents into the Repository using DBMS_XDB

s Loading Documents into the Repository using Protocols

Loading XML Content using SQL or PL/SQL

You can use a simple INSERT operation in SQL or PL/SQL to load an XML document
into the database. Before the document can be stored as an XMLType column or table,
you must convert it into an XMLType instance using one of the XMLType constructors.

See Also:
»  Chapter 4, "XMLType Operations"
= "APIs for XML" on page 1-4

»  Oracle Database PL/SQL Packages and Types Reference for a
description of the XMLType constructors

XMLType constructors allow an XMLType instance to be created from different
sources, including VARCHAR, CLOB, and BFILE values. The constructors accept
additional arguments that reduce the amount of processing associated with XMLType
creation. For example, if you are sure that a given source XML document is valid, you
can provide an argument to the constructor that disables the type-checking that is
otherwise performed.

Using Oracle XML DB  3-5



Loading XML Content into Oracle XML DB

In addition, if the source data is not encoded in the database character set, an XMLType
instance can be constructed using a BFILE or BLOB value. The encoding of the source
data is specified through the character set id (csid) argument of the constructor.

Example 3-5 shows how to insert XML content into an XMLType table. Before making
this insertion, you must create a database directory object that points to the directory
containing the file to be processed. To do this, you must have the CREATE ANY
DIRECTORY privilege.

See Also:  Oracle Database SQL Language Reference, Chapter 18,
under GRANT

Example 3-4 Creating a Database Directory
CREATE DIRECTORY xmldir AS path to_folder containing XMIL_file;

Example 3-5 Inserting XML Content into an XMLType Table

INSERT INTO mytable2 VALUES (XMLType (bfilename ('XMLDIR', 'purchaseOrder.xml'),
nls_charset_id('AL32UTF8'")));

The value passed to nls_charset_id indicates that the encoding for the file to be
read is UTE-8.

When you use SQL INSERT to insert a large document containing collections into
XMLType tables (but not into XMLType columns), Oracle XML DB optimizes load time
and memory usage.

See Also: "Loading and Retrieving Large Documents with
Collections" on page 9-28

Loading XML Content using Java

Example 3-6 shows how to load XML content into Oracle XML DB by first creating an
XMLType instance in Java, given a Document Object Model (DOM).

Example 3-6 Inserting Content into an XMLType Table using Java

public void doInsert (Connection conn, Document doc)
throws Exception
{
String SQLTEXT = "INSERT INTO purchaseorder VALUES (?)";
XMLType xml = null;
xml = XMLType.createXML (conn,doc);
OraclePreparedStatement sglStatement = null;
sglStatement = (OraclePreparedStatement) conn.prepareStatement (SQLTEXT) ;
sglStatement.setObject (1,xml);
sglStatement.execute() ;

}

A simple bulk loader application is available on the Oracle Technology Network
(OTN) site at
http://www.oracle.com/technetwork/database-features/xmldb/overvi
ew/index.html. It shows how to load a directory of XML files into Oracle XML DB
using Java Database Connectivity (JDBC). JDBC is a set of Java interfaces to Oracle
Database.

3-6 Oracle XML DB Developer's Guide



Loading XML Content into Oracle XML DB

Loading XML Content using C

Example 3-7 shows how to insert XML content into an XML Type table using C code,
by creating an XMLType instance given a DOM.

Example 3-7 Inserting Content into an XMLType Table using C

#include "stdio.h"
#include <xml.h>
#include <stdlib.h>
#include <string.h>
#include <ocixmldb.h>
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIServer *srvhp;
OCIDuration dur;
0OCISession *sesshp;

oratext *username = "QUINE";

oratext *password = "FFFFkkkkkkxxn. /* Replace with the real password. */

oratext *filename = "AMCEWEN-20021009123336171PDT.xml";

oratext *schemaloc = "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd";
/* ________________________________________________________ */

/* Execute a SQL statement that binds XML data */

/* ________________________________________________________ Jr/

sword exec_bind_xml (OCISvcCtx *svchp, OCIError *errhp, OCIStmt *stmthp,
void *xml, OCIType *xmltdo, OraText *sglstmt)

OCIBind *bndhpl = (OCIBind *) 0;
sword status = 0;
0CIInd ind = OCI_IND_NOTNULL;
OCIInd *indp = &ind;
if (status = OCIStmtPrepare(stmthp, errhp, (OraText *)sqglstmt,
(ub4)strlen((const char *)sqglstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
return OCI_ERROR;
if (status = OCIBindByPos (stmthp, &bndhpl, errhp, (ub4) 1, (dvoid *) 0,
(sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
(ub2 *)0, (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
return OCI_ERROR;
if (status = OCIBindObject (bndhpl, errhp, (CONST OCIType *) xmltdo,
(dvoid **) &xml, (ub4 *) 0,
(dvoid **) &indp, (ub4 *) 0))
return OCI_ERROR;
if (status = 0CIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
(CONST OCISnapshot*) 0, (OCISnapshot*) 0,
(ub4) OCI_DEFAULT))
return OCI_ERROR;
return OCI_SUCCESS;

}

/* ________________________________________________________ */
/* Initialize OCI handles, and connect */
/* ________________________________________________________ */

{
}
/* ________________________________________________________ *k/
/* Free OCI handles, and disconnect */
/* ________________________________________________________ */

Using Oracle XML DB 3-7



Loading XML Content into Oracle XML DB

void free_oci()
{

}

void main()

{
OCIType *xmltdo;
xmldocnode *doc;
ocixmldbparam params[1];
xmlerr err;
xmlctx *xctx;
oratext *ins_stmt;
sword status;
xmlnode *root;
oratext buf[10000];

/* Initialize envhp, svchp, errhp, dur, stmthp */
init_oci_connect();

/* Get an XML context */

params [0] .name_ocixmldbparam = XCTXINIT_ OCIDUR;

params [0] .value_ocixmldbparam = &dur;

xctx = OCIXmlDbInitXmlCtx (envhp, svchp, errhp, params, 1);

if (!(doc = XmlLoadDom(xctx, &err, "file", filename,
"schema_location", schemaloc, NULL)))

printf ("Parse failed.\n");
return;
}
else
printf ("Parse succeeded.\n");
root = XmlDomGetDocElem(xctx, doc);
printf ("The xml document is :\n");
XmlSaveDom (xctx, &err, (xmlnode *)doc, "buffer", buf, "buffer_ length", 10000, NULL);
printf("%$s\n", buf);

/* Insert the document into my_table */

ins_stmt = (oratext *)"insert into purchaseorder values (:1)";

status = OCITypeByName (envhp, errhp, svchp, (const text *) "SyYS",
(ub4) strlen((const char *)"SYS"), (const text *) "XMLTYPE",
(ub4) strlen((const char *)"XMLTYPE"), (CONST text *) O,

(ub4) 0, OCI_DURATION_SESSION, OCI_TYPEGET HEADER,
(OCIType **) &xmltdo);
if (status == OCI_SUCCESS)
{
status = exec_bind_xml (svchp, errhp, stmthp, (void *)doc,
xmltdo, ins_stmt);
}
if (status == OCI_SUCCESS)
printf ("Insert successful\n");
else
printf ("Insert failed\n");

/* Free XML instances */
if (doc)
XmlFreeDocument ( (xmlctx *)xctx, (xmldocnode *)doc);
/* Free XML CTX */
OCIXmlDbFreeXmlCtx (xctx) ;
free_oci();

3-8 Oracle XML DB Developer's Guide



Loading XML Content into Oracle XML DB

Note: For simplicity in demonstrating this feature, this example does
not perform the password management techniques that a deployed
system normally uses. In a production environment, follow the Oracle
Database password management guidelines, and disable any sample
accounts. See Oracle Database Security Guide for password management
guidelines and other security recommendations.

See Also: Appendix A, "Oracle-Supplied XML Schemas and
Examples"” for a complete listing of this example

Loading Large XML Files that Contain Small XML Documents

When loading large XML files consisting of a collection of smaller XML documents, it
is often more efficient to use Simple API for XML (SAX) parsing to break the file into a
set of smaller documents, and then insert those documents. SAX is an XML standard
interface provided by XML parsers for event-based applications.

You can use SAX to load a database table from very large XML files in the order of 30
MB or larger, by creating individual documents from a collection of nodes. You can
also bulk load XML files.

See Also:

s http://www.saxproject.org/ for information about SAX

m http://www.oracle.com/technetwork/database-features
/xmldb/overview/index.html, for an application example
that loads large files using SAX

Loading Large XML Files using SQL*Loader

Use SQL*Loader to load large amounts of XML data into Oracle Database.
SQL*Loader loads in one of two modes, conventional or direct path. Table 3-1
compares these modes.

Table 3—-1 SQL*Loader — Conventional and Direct-Path Load Modes

Conventional Load Mode Direct-Path Load Mode

Uses SQL to load data into Oracle Database. This Bypasses SQL and streams the data
is the default mode. directly into Oracle Database.

Advantage: Follows SQL semantics. For example  Advantage: This loads data much faster
triggers are fired and constraints are checked. than the conventional load mode.

Disadvantage: This loads data slower than with the Disadvantage: SQL semantics is not obeyed.
direct load mode. For example triggers are not fired and
constraints are not checked.

When loading LOBs with SQL*Loader direct-path load, much memory can be used. If
the message SQL*Loader 700 (out of memory) appears, then it is likely that
more rows are being included in each load call than can be handled by your operating
system and process memory. Workaround: use the ROWS option to read a smaller
number of rows in each data save.

See Also: Chapter 35, "Loading XML Data using SQL*Loader"

Using Oracle XML DB  3-9



Loading XML Content into Oracle XML DB

Loading XML Documents into the Repository using DBMS_XDB

You can also store XML documents in Oracle XML DB Repository, and access these
documents using path-based rather than table-based techniques. To load an XML
document into the repository under a given path, use PL/SQL function DBMS_
XDB.createResource. Example 3-8 illustrates this.

Example 3-8 Inserting XML Content into the Repository using CREATERESOURCE

DECLARE
res BOOLEAN;
BEGIN
res := DBMS_XDB.createResource('/home/QUINE/purchaseOrder.xml',
bfilename ('XMLDIR', 'purchaseOrder.xml'),
nls_charset_id('AL32UTF8'));
END;
/

Many operations for configuring and using Oracle XML DB are based on processing
one or more XML documents. Examples include registering an XML schema and
performing an XSL transformation. The easiest way to make these XML documents
available to Oracle Database is to load them into Oracle XML DB Repository.

Loading Documents into the Repository using Protocols

Oracle XML DB Repository can store XML documents that are either XML
schema-based or non-schema-based. It can also store content that is not XML data,
such as HTML files, image files, and Microsoft Word documents.

You can load XML documents from a local file system into Oracle XML DB Repository
using protocols such as WebDAYV, from Windows Explorer or other tools that support
WebDAV. Figure 3-1 shows a simple drag and drop operation for copying the contents
of the SCOTT folder from the local hard drive to folder poSource in the Oracle

XML DB Repository.

Figure 3—1 Loading Content into the Repository using Windows Explorer

® C:\oracleldemo10.1.0.0.0%basicDemo\l OCAL \configurationFiles

¢ File Edit \View Favortes Tools  Help ,'

eBack - J lﬁ /_-\’ Search ||~ Folders '

: Address |[h Cihoracleldemna’ 10.1.0.0.0\basicDemoiLOCAL configur ationFiles ™M

File and Folder Tasks

Other Places

Details 7_« E

poSource

File Folder Copying b10759.pdf to http: localhost 8090/home/SCOTT ApoSource/ doc
Date Modified: Yesterday,

Movember 21, 2003, 4:42 PM

The copied folder might contain, for example, an XML schema document, an HTML
page, and some XSLT style sheets.

3-10 Oracle XML DB Developer's Guide



Character Sets of XML Documents

Character Sets of XML Documents

This section describes how character sets of XML documents are determined.

Caution: AL32UTF8 is the Oracle Database character set that is
appropriate for XMLType data. It is equivalent to the IANA registered
standard UTF-8 encoding, which supports all valid XML characters.

Do not confuse Oracle Database database character set UTF8 (no
hyphen) with database character set AL32UTFS8 or with character
encoding UTF-8. Database character set UTFS8 has been superseded by
AL32UTES. Do not use UTFS8 for XML data. Character set UTF8
supports only Unicode version 3.1 and earlier. It does not support all
valid XML characters. AL32UTEF8 has no such limitation.

Using database character set UTFS8 for XML data could potentially stop
a system or affect security negatively. If a character that is not supported
by the database character set appears in an input-document element
name, a replacement character (usually "?") is substituted for it. This
terminates parsing and raises an exception. It can cause an
irrecoverable error.

XML Encoding Declaration

Each XML document is composed of units called entities. Each entity in an XML
document may use a different encoding for its characters. Entities that are stored in an
encoding other than UTF-8 or UTF-16 must begin with an XML declaration containing
an encoding specification indicating the character encoding in use. For example:

<?xml version='1.0' encoding='EUC-JP' ?>

Entities encoded in UTF-16 must begin with the Byte Order Mark (BOM), as described
in Appendix F of the XML 1.0 Reference. For example, on big-endian platforms, the
BOM required of a UTF-16 data stream is #xFEFF.

In the absence of both the encoding declaration and the BOM, the XML entity is
assumed to be encoded in UTF-8. Because ASCII is a subset of UTF-8, ASCII entities
do not require an encoding declaration.

In many cases, external sources of information are available, besides the XML data, to
provide the character encoding in use. For example, the encoding of the data can be
obtained from the charset parameter of the Content-Type field in an HTTP(S)
request as follows:

Content-Type: text/xml; charset=IS0-8859-4

Character-Set Determination When Loading XML Documents into the Database

In releases prior to Oracle Database 10g release 1, all XML documents were assumed to
be in the database character set, regardless of the document encoding declaration.
Starting with Oracle Database 10g release 1, the document encoding is detected from
the encoding declaration when the document is loaded into the database.

However, if the XML data is obtained from a CLOB or VARCHAR value, then the
encoding declaration is ignored, because these two data types are always encoded in
the database character set.

Using Oracle XML DB 3-11



Character Sets of XML Documents

In addition, when loading data into Oracle XML DB, either through programmatic
APIs or transfer protocols, you can provide external encoding to override the
document encoding declaration. An error is raised if you try to load a schema-based
XML document that contains characters that are not legal in the determined encoding.

The following examples show different ways to specify external encoding:

s Using PL/SQL function DBMS_XDB. createResource to create a file resource
from a BFILE, you can specify the file encoding with the CSID argument. If a zero
CSIDis specified then the file encoding is auto-detected from the document
encoding declaration.

CREATE DIRECTORY xmldir AS '/private/xmldir';
CREATE OR REPLACE PROCEDURE loadXML (filename VARCHAR2, file_csid NUMBER) IS
xbfile BFILE;

RET BOOLEAN;
BEGIN
xbfile := bfilename('XMLDIR', filename);
ret := DBMS_XDB.createResource ('/public/mypurchaseorder.xml',
xbfile,
file_csid);
END;

/

»s  Use the FTP protocol to load documents into Oracle XML DB. Use the quote
set_charset FIP command to indicate the encoding of the files to be loaded.

ftp> quote set_charset Shift_JIS
ftp> put mypurchaseorder.xml

= Use the HTTP(S) protocol to load documents into Oracle XML DB. Specify the
encoding of the data to be transmitted to Oracle XML DB in the request header.

Content-Type: text/xml; charset= EUC-JP

Character-Set Determination When Retrieving XML Documents from the Database

XML documents stored in Oracle XML DB can be retrieved using a SQL client,
programmatic APIs, or transfer protocols. You can specify the encoding of the
retrieved data (except in Oracle Database releases prior to 10g, where XML data is
retrieved only in the database character set).

When XML data is stored as a CLOB or VARCHAR?2 value, the encoding declaration, if
present, is always ignored for retrieval, just as for storage. The encoding of a retrieved
document can thus be different from the encoding explicitly declared in that
document.

The character set for an XML document retrieved from the database is determined in
the following ways:

s SQL client - If a SQL client (such as SQL*Plus) is used to retrieve XML data, then
the character set is determined by the client-side environment variable NL.S_LANG.
In particular, this setting overrides any explicit character-set declarations in the
XML data itself.

For example, if you set the client side NL.S_LANG variable to AMERICAN_
AMERICA.AL32UTF8 and then retrieve an XML document with encoding EUC_JP
provided by declaration <?xml version="1.0" encoding="EUC-JP"?>, the
character set of the retrieved document is AL32UTF8, not EUC_JP.

3-12 Oracle XML DB Developer's Guide



Overview of the W3C XML Schema Recommendation

See Also: Oracle Database Globalization Support Guide for information
about NLS_LANG

= PL/SQL and APIs - Using PL/SQL or programmatic APIs, you can retrieve XML
data into VARCHAR, CLOB, or XMLType data types. As for SQL clients, you can
control the encoding of the retrieved data by setting NL.S_LANG.

You can also retrieve XML data into a BLOB value using XMLType and URIType
methods. These let you specify the character set of the returned BLOB value. Here
is an example:

CREATE OR REPLACE FUNCTION getXML (pathname VARCHAR2, charset VARCHAR2)
RETURN BLOB IS
xblob BLOB;
BEGIN
SELECT XMLSERIALIZE (DOCUMENT e.RES AS BLOB ENCODING charset) INTO xblob
FROM RESOURCE_VIEW e WHERE equals_path(e.RES, pathname) = 1;
RETURN xblob;
END;
/

s FTP - You can use the FTP quote set_nls_locale command to set the
character set:

ftp> quote set_nls_locale EUC-JP
ftp> get mypurchaseorder.xml

See Also: FTP Quote Methods on page 28-10

s HTTP(S) - You can use the Accept-Charset parameter in an HTTP(S) request:

/httptest/mypurchaseorder.xml 1.1 HTTP/Host: localhost:2345
Accept: text/*
Accept-Charset: iso-8859-1, utf-8

See Also:  Controlling Character Sets for HTTP(S) on page 28-20

Overview of the W3C XML Schema Recommendation

The W3C XML Schema Recommendation defines a standardized language for
specifying the structure, content, and certain semantics of a set of XML documents. An
XML schema can be considered the metadata that describes a class of XML documents.
The XML Schema Recommendation is described at:
http://www.w3.0org/TR/xmlschema-0/

XML Instance Documents

Documents conforming to a given XML schema can be considered as members or
instances of the class defined by that XML schema. Consequently the term instance
document is often used to describe an XML document that conforms to a given XML
schema. The most common use of an XML schema is to validate that a given instance
document conforms to the rules defined by the XML schema.

Using Oracle XML DB 3-13



Overview of the W3C XML Schema Recommendation

XML Schema for Schemas

The W3C Schema working group publishes an XML schema, often referred to as the
"Schema for Schemas". This XML schema provides the definition, or vocabulary, of the
XML Schema language. All valid XML schemas can be considered to be members of
the class defined by this XML schema. An XML schema is thus an XML document that
conforms to the class defined by the XML schema published at
http://www.w3.0rg/2001/XMLSchema.

Editing XML Schemas

XML schemas can be authored and edited using any of the following:
= A simple text editor, such as emacs or vi

s An XML schema-aware editor, such as the XML editor included with Oracle
JDeveloper

= An explicit XML schema-authoring tool, such as XMLSpy from Altova
Corporation

XML Schema Features

The XML Schema language defines 47 scalar data types. This provides for strong
typing of elements and attributes. The W3C XML Schema Recommendation also
supports object-oriented techniques such as inheritance and extension, hence you can
design XML schema with complex objects from base data types defined by the XML
Schema language. The vocabulary includes constructs for defining and ordering,
default values, mandatory content, nesting, repeated sets, and redefines. Oracle

XML DB supports all the constructs, except for redefines.

Text Representation of the Purchase Order XML Schema

Example 3-9 shows the purchase order XML schema as an XML file,
purchaseOrder.xsd.

Example 3-9 Purchase-Order XML Schema, purchaseOrder.xsd

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" version="1.0">
<xs:element name="PurchaseOrder" type="PurchaseOrderType"/>
<xs:complexType name="PurchaseOrderType">
<xXs:sequence>

<Xs:
<Xs:

<Xs

<XS:
<XSs:
<XSs:
<Xs:

<Xs

<Xs:

element name="Reference" type="ReferenceType"/>

element name="Actions" type="ActionsType"/>

:element name="Reject" type="RejectionType" minOccurs="0"/>

element name="Requestor" type="RequestorType"/>

element name="User" type="UserType"/>

element name="CostCenter" type="CostCenterType"/>

element name="ShippingInstructions" type="ShippingInstructionsType"/>
:element name="SpecialInstructions" type="SpeciallnstructionsType"/>
element name="LineItems" type="LineItemsType"/>

</Xs:sequence>
</xs:complexType>
<xs:complexType name="LineltemsType">
<Xs:sequence>
<xs:element name="LinelItem" type="LinelItemType" maxOccurs="unbounded"/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="LineItemType">
<xXs:sequence>

3-14 Oracle XML DB Developer's Guide



Overview of the W3C XML Schema Recommendation

<xs:element name="Description" type="DescriptionType"/>
<xs:element name="Part" type="PartType"/>
</xs:sequence>
<xs:attribute name="ItemNumber" type="xs:integer"/>
</xs:complexType>
<xs:complexType name="PartType">
<xs:attribute name="Id">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:minLength value="10"/>
<xs:maxLength value="14"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Quantity" type="moneyType"/>
<xs:attribute name="UnitPrice" type="quantityType"/>
</xs:complexType>
<xs:simpleType name="ReferenceType">
<xs:restriction base="xs:string">
<xs:minLength value="18"/>
<xs:maxLength value="30"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="ActionsType">
<XS:sequence>
<xs:element name="Action" maxOccurs="4">
<xs:complexType>
<XS:sequence>
<xs:element name="User" type="UserType"/>
<xs:element name="Date" type="DateType" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="RejectionType">
<xs:all>
<xs:element name="User" type="UserType" minOccurs="0"/>
<xs:element name="Date" type="DateType" minOccurs="0"/>

<xs:element name="Comments" type="CommentsType" minOccurs="0"/>

</xs:all>
</xs:complexType>
<xs:complexType name="ShippingInstructionsType">
<Xs:sequence>
<xs:element name="name" type="NameType" minOccurs="0"/>
<xs:element name="address" type="AddressType" minOccurs="0"/>

<xs:element name="telephone" type="TelephoneType" minOccurs="0"/>

</Xs:sequence>
</xs:complexType>
<xs:simpleType name="moneyType">
<xs:restriction base="xs:decimal">
<xs:fractionDigits value="2"/>
<xs:totalDigits value="12"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="quantityType">
<xs:restriction base="xs:decimal">
<xs:fractionDigits value="4"/>
<xs:totalDigits value="8"/>
</xs:restriction>

Using Oracle XML DB 3-15



Overview of the W3C XML Schema Recommendation

</xs:simpleType>
<xs:simpleType name="UserType">
<xs:restriction base="xs:string">
<xs:minLength value="0"/>
<xs:maxLength value="10"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="RequestorType">
<xs:restriction base="xs:string">
<xs:minLength value="0"/>
<xs:maxLength value="128"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="CostCenterType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="4"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="VendorType">
<xs:restriction base="xs:string">
<xs:minLength value="0"/>
<xs:maxLength value="20"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="PurchaseOrderNumberType">
<xs:restriction base="xs:integer"/>
</xs:simpleType>
<xs:simpleType name="SpecialInstructionsType">
<xs:restriction base="xs:string">
<xs:minLength value="0"/>
<xs:maxLength value="2048"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="NameType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="20"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="AddressType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="TelephoneType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="24"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="DateType">
<xs:restriction base="xs:date"/>
</xs:simpleType>
<xs:simpleType name="CommentsType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="2048"/>
</xs:restriction>

3-16 Oracle XML DB Developer's Guide



Overview of the W3C XML Schema Recommendation

</xs:simpleType>
<xs:simpleType name="DescriptionType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

See Also: Example 3-10, "Annotated Purchase-Order XML
Schema, purchaseOrder.xsd" on page 3-20

Graphical Representation of the Purchase-Order XML Schema

Figure 3-2 shows the purchase-order XML schema displayed using XMLSpy. XMLSpy
is a graphical and user-friendly tool from Altova Corporation for creating and editing
XML schema and XML documents. See http://www.altova.com for details.
XMLSpy also supports WebDAV and FTP protocols hence can directly access and edit
content stored in Oracle XML DB Repository.

Figure 3-2 XMLSpy Graphical Representation of the PurchaseOrder XML Schema

%5 XMLSRY - [http:{/localhost: B0BOfhome/SCOTT/poSourcefxsdfpurchaseOrder. xsd]

File Edit Projeck ¥ML DTD{Schema Schema design ¥SL  Authentic Comwvert  Wiew Browser WSDL SOAP  Tools Window Help -8 x
D Ssd@ G & &8 G/ 2B |0 Enca [ BB
Project . x ﬂ el iaianianianiaiill Components . x
PurchaseOrderType
0 Show XML Sche | _ PurchaseOrder
+ #5L Filez |
= DTD/Schermas ()} | T
hitp: #flocalhost: | ' Reject
Entities | " Saaiaiutna]
|
| = Deetails . x
PurchaseOrder
4 | | » name Part | A
Shippinginstructions isFef |
Info . x mindce |1
ES|)e1:iallns‘truc:‘ti-:u15 maxdes |1 =l
type PartT = |
ST T T T e T e e T content  comples

derivedBy ]

-
| | LineltemType mixed >
rillahile - |
jlz | Dracle
Lineltems | Details -
| b Facets P

< >

Attributes ] Identity conztr aints ]

EE=E e
Mame Type Use Diefault Fixed
Id |xs:string | | |
(uantity money Type 3
Text Grid Schema/wSDL Authentic Browser
http: i flacalhost:8080/homefSCOTT jpoSource fxsd/purchaseOrder . xsd | Facet:

¥MLSPY w2004 rel. 3U Reqistered ko Etic Paapanen {Oracle ML DE) @1998-2003 Alkova GmbH & Altava, Inc.

The purchase order XML schema demonstrates some key features of a typical XML
document:

s Global element PurchaseOrder is an instance of the complexType
PurchaseOrderType

Using Oracle XML DB 3-17



Using XML Schema with Oracle XML DB

m PurchaseOrderType defines the set of nodes that make up a PurchaseOrder
element

s LineItems element consists of a collection of LineItem elements
s Each LineItem element consists of two elements: Description and Part

m Part element has attributes Id, Quantity, and UnitPrice

Using XML Schema with Oracle XML DB

This section describes the use of XML Schema with Oracle XML DB.

Why Use XML Schema with Oracle XML DB?

The following paragraphs describe the main reasons for using XML schema with
Oracle XML DB.

Validating Instance Documents with XML Schema

The most common usage of XML Schema is as a mechanism for validating that
instance documents conform to a given XML schema. The XMLType methods
isSchemavalid() and schemavValidate () validate the contents of an instance
document stored as XMLType.

Constraining Instance Documents for Business Rules or Format Compliance

An XML schema can also be used as a constraint when creating tables or columns of
XMLType. For example, the XML Type is constrained to storing XML documents
compliant with one of the global elements defined by the XML schema.

Defining How XMLType Contents Must be Stored in the Database

Oracle XML DB also uses XML Schema as a mechanism for defining how the contents
of an XML Type instance should be stored inside the database. All storage models
support the use of XML Schema: binary XML, structured, unstructured, and hybrid (a
combination of structured and unstructured). See "XMLType Storage Models" on
page 1-14 for information on the available storage models for XMLType.

Structured Storage of XML Documents

Structured storage of XML documents is based on decomposing the content of the
document into a set of SQL objects. These SQL objects are based on the SQL 1999 Type
framework. When an XML schema is registered with Oracle XML DB, the required
SQL type definitions are automatically generated from the XML schema.

A SQL type definition is generated from each complexType defined by the XML
schema. Each element or attribute defined by the complexType becomes a SQL
attribute in the corresponding SQL type. Oracle XML DB automatically maps the 47
scalar data types defined by the XML Schema Recommendation to the 19 scalar data
types supported by SQL. A varray type is generated for each element and this can
occur multiple times.

The generated SQL types allow XML content, compliant with the XML schema, to be
decomposed and stored in the database as a set of objects without any loss of
information. When the document is ingested the constructs defined by the XML
schema are mapped directly to the equivalent SQL types.

3-18 Oracle XML DB Developer's Guide



Using XML Schema with Oracle XML DB

This lets Oracle XML DB leverage the full power of Oracle Database when managing
XML and can lead to significant reductions in the amount of space required to store
the document. It can also reduce the amount of memory required to query and update
XML content.

Annotating an XML Schema to Control Naming, Mapping, and Storage

The W3C XML Schema Recommendation defines an annotation mechanism that lets
vendor-specific information be added to an XML schema. Oracle XML DB uses this
mechanism to control the mapping between the XML schema and database features.

You can use XML schema annotations to do the following:
»  Specify which database tables are used to store the XML data.

s Override the default mapping between XML Schema data types and SQL data
types, for structured storage.

= Name the database objects and attributes that are created to store XML data (for
structured storage).

Controlling How Collections Are Stored for Object-Relational XMLType Storage

When you register an XML schema for data that is stored object-relationally and you
set registration parameter GENTABLES to TRUE, default tables are created
automatically to store the associated XML instance documents.

Order is preserved among XML collection elements when they are stored. The result is
an ordered collection.” You can store data in an ordered collection in these ways:

= Varray in a table. Each element in the collection is mapped to a SQL object. The
collection of SQL objects is stored as a set of rows in a table, called an ordered
collection table (OCT). By default, all collections are stored in OCTs. This default
behavior corresponds to the XML schema annotation
xdb:storeVarrayAsTable = "true" (default value).

= Varray in a LOB. Each element in the collection is mapped to a SQL object. The
entire collection of SQL objects is serialized as a varray and stored in a LOB
column. To store a given collection as a varray in a LOB, use XML schema
annotation xdb:storeVarrayAsTable = "false".

You can also use out-of-line storage for an ordered collection. This corresponds to XML
schema annotation SQLInline = "false",and it means that a varray of REFs in
the collection table or LOB tracks the collection content, which is stored out of line.

There is no requirement to annotate an XML schema before using it. Oracle XML DB
uses a set of default assumptions when processing an XML schema that contains no
annotations.

If you do not supply any of the annotations mentioned in this section, then Oracle

XML DB stores a collection as a heap-based OCT. You can force OCTs to be stored as
index-organized tables (IOTs) instead, by passing REGISTER_NT_AS_IOT in the

OPTIONS parameter of DBMS_XMLSCHEMA . registerSchema.

2 If you use XML schema annotation maintainOrder = "false", then an unordered
collection is used instead of an ordered collection. Oracle recommends that you use ordered
collections (maintainOrder = "true")for XML data, to preserve document order. By
default, attribute maintainOrder is true.

Using Oracle XML DB 3-19



Using XML Schema with Oracle XML DB

Note: Use heap-based OCTs, not IOTs, unless you are explicitly
advised by Oracle to use IOTs. IOT storage has these significant
limitations:

» It disables partitioning of the collection tables (IOTs).

= It supports only document-level Oracle Text indexes. It disables
indexes that are element-specific or attribute-specific.

See also: Chapter 12, "Full-Text Search Over XML Data" for
information about using Oracle Text with XML data.

Note: In releases prior to Oracle Database 11g Release 1:
= OCTs were stored as IOTs by default.

s The default value for xdb: storeVarrayAsTable was false.

See Also:

= 'Structured Storage of XML Schema-Based Data" on page 7-32
for information about collection storage when you create
XMLType tables and columns manually using structured
storage

»  Chapter 7, "XML Schema Storage and Query: Basic"
= "Setting Annotation Attribute SQLInline to false for
Out-Of-Line Storage" on page 9-4

= Partitioning XMLType Tables and Columns Stored
Object-Relationally on page 9-10

Declaring the Oracle XML DB Namespace

Before annotating an XML schema you must first declare the Oracle XML DB
namespace. The Oracle XML DB namespace is defined as:

http://xmlns.oracle.com/xdb

The namespace is declared in the XML schema by adding a namespace declaration
such as the following to the root element of the XML schema:

xmlns:xdb="http://xmlns.oracle.com/xdb"

Note the use of a namespace prefix (xdb). This makes it possible to abbreviate the
namespace to xdb when adding annotations.

Example 3-10 shows the beginning of the PurchaseOrder XML schema with
annotations. See Example A-1 on page A-30 for the complete schema listing.

Example 3-10 Annotated Purchase-Order XML Schema, purchaseOrder.xsd

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

xmlns:xdb="http://xmlns.oracle.com/xdb"
version="1.0"
xdb:storeVarrayAsTable="true">

<xs:element name="PurchaseOrder" type="PurchaseOrderType" xdb:defaultTable="PURCHASEORDER"/>

<xs:complexType name="PurchaseOrderType" xdb:SQLType="PURCHASEORDER_ T">

<Xs:sequence>
<xs:element name="Reference" type="ReferenceType" minOccurs="1" xdb:SQLName="REFERENCE"/>

3-20 Oracle XML DB Developer's Guide



Using XML Schema with Oracle XML DB

<xs:element name="Actions" type="ActionsType" xdb:SQLName="ACTIONS"/>
<xs:element name="Reject" type="RejectionType" minOccurs="0" xdb:SQLName="REJECTION"/>
<xs:element name="Requestor" type="RequestorType" xdb:SQLName="REQUESTOR"/>
<xs:element name="User" type="UserType" minOccurs="1" xdb:SQLName="USERID"/>
<xs:element name="CostCenter" type="CostCenterType" xdb:SQLName="COST_CENTER"/>
<xs:element name="ShippingInstructions" type="ShippingInstructionsType"
xdb: SQLName="SHIPPING_INSTRUCTIONS" />
<xs:element name="SpecialInstructions" type="SpeciallnstructionsType"
xdb: SQLName="SPECIAL_INSTRUCTIONS"/>
<xs:element name="LineItems" type="LineItemsType" xdb:SQLName="LINEITEMS"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="LineItemsType" xdb:SQLType="LINEITEMS T">
<XS:sequence>
<xs:element name="Lineltem" type="LineltemType" maxOccurs="unbounded"
xdb: SQLName="LINEITEM" xdb:SQLCollType="LINEITEM V" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="LineltemType" xdb:SQLType="LINEITEM T">
<XS:sequence>
<xs:element name="Description" type="DescriptionType"
xdb: SQLName="DESCRIPTION" />
<xs:element name="Part" type="PartType" xdb:SQLName="PART"/>
</xs:sequence>
<xs:attribute name="ItemNumber" type="xs:integer" xdb:SQLName="ITEMNUMBER"
xdb: SQLType="NUMBER" />
</xs:complexType>
<xs:complexType name="PartType" xdb:SQLType="PART T">
<xs:attribute name="Id" xdb:SQLName="PART NUMBER" xdb:SQLType="VARCHAR2">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:minLength value="10"/>
<xs:maxLength value="14"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="Quantity" type="moneyType" xdb:SQLName="QUANTITY"/>
<xs:attribute name="UnitPrice" type="quantityType" xdb:SQLName="UNITPRICE"/>
</xs:complexType>
<xs:simpleType name="ReferenceType">
<xs:restriction base="xs:string">
<xs:minLength value="18"/>
<xs:maxLength value="30"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="ActionsType" xdb:SQLType="ACTIONS_ T">
<Xs:sequence>
<xs:element name="Action" maxOccurs="4" xdb:SQLName="ACTION" xdb:SQLCollType="ACTION V">
<xs:complexType xdb:SQLType="ACTION_ T">
<XS:sequence>
<xs:element name="User" type="UserType" xdb:SQLName="ACTIONED_ BY"/>
<xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_ACTIONED"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="RejectionType" xdb:SQLType="REJECTION_ T">
<xs:all>
<xs:element name="User" type="UserType" minOccurs="0" xdb:SQLName="REJECTED_ BY"/>
<xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_REJECTED"/>
<xs:element name="Comments" type="CommentsType" minOccurs="0" xdb:SQLName="REASON REJECTED"/>
</xs:all>
</xs:complexType>
<xs:complexType name="ShippingInstructionsType" xdb:SQLType="SHIPPING INSTRUCTIONS_T">
<XS:sequence>

Using Oracle XML DB 3-21



Using XML Schema with Oracle XML DB

<xs:element name="name" type="NameType" minOccurs="0" xdb:SQLName="SHIP_TO_NAME"/>
<xs:element name="address" type="AddressType" minOccurs="0" xdb:SQLName="SHIP_TO_ADDRESS"/>
<xs:element name="telephone" type="TelephoneType" minOccurs="0" xdb:SQLName="SHIP_TO_ PHONE"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="moneyType">
<xs:restriction base="xs:decimal">
<xs:fractionDigits value="2"/>
<xs:totalDigits value="12"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="quantityType">
<xs:restriction base="xs:decimal">
<xs:fractionDigits value="4"/>
<xs:totalDigits value="8"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="UserType">
<xs:restriction base="xs:string">
<xs:minLength value="0"/>
<xs:maxLength value="10"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="RequestorType">
<xs:restriction base="xs:string">
<xs:minLength value="0"/>
<xs:maxLength value="128"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="CostCenterType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="4"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="VendorType">
<xs:restriction base="xs:string">
<xs:minLength value="0"/>
<xs:maxLength value="20"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="PurchaseOrderNumberType">
<xs:restriction base="xs:integer"/>
</xs:simpleType>
<xs:simpleType name="SpeciallnstructionsType">
<xs:restriction base="xs:string">
<xs:minLength value="0"/>
<xs:maxLength value="2048"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="NameType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="20"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="AddressType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="TelephoneType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="24"/>

3-22 Oracle XML DB Developer's Guide



Using XML Schema with Oracle XML DB

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="DateType">
<xs:restriction base="xs:date"/>

</xs:simpleType>

<xs:simpleType name="CommentsType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="2048"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="DescriptionType">
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="256"/>

</xs:restriction>

</xs:simpleType>
</xs:schema>

The PurchaseOrder XML schema defines the following two namespaces:

http://www.w3c.org/2001/XMLSchema. This is reserved by W3C for the
Schema for Schemas.

http://xmlns.oracle.com/xdb. This is reserved by Oracle for the Oracle
XML DB schema annotations.

The PurchaseOrder schema uses several annotations, including the following:

defaultTable annotation in the PurchaseOrder element. This specifies that
XML documents, compliant with this XML schema are stored in a database table
called purchaseorder.

SQLType annotation.

The first occurrence of SQLType specifies that the name of the SQL type generated
from complexType element PurchaseOrderType is purchaseorder_t.

The second occurrence of SQLType specifies that the name of the SQL type
generated from the complexType element LineItemType is lineitem_t and
the SQL type that manages the collection of LineItem elementsis lineitem_v.

SQLName annotation. This provides an explicit name for each SQL attribute of
purchaseorder_t.

Figure 3-3 shows the XMLSpy Oracle tab, which facilitates adding Oracle XML DB
schema annotations to an XML schema while working in the graphical editor.

Using Oracle XML DB 3-23



Using XML Schema with Oracle XML DB

Figure 3-3 XMLSpy Showing Support for Oracle XML DB Schema Annotations

¥ XMLSPY - [http://localhost: B0BO/home/SCOTT/poSource/xsdfpurchaseOrder.xsd]

File Edit Project ¥ML DTDJSchema Schema design ¥SL  Authentic Convert Wiew Browssr WSDL SOAP Tools Window Help _ 8 x
DEd@ | % 7 o 28
Project B %E ﬁl Components - x
IE 2.0 Show XML Sche oif|element PurchaseOrder fann: PurchaseOrder
#ML Files ﬁcomplexwpe PurchaseOrderType ann:
#5L Files | 8|complexType  LinehemsType ann:
HTML Files | &|complexTyps  LineltemType an;
DTD/Schemas ﬁcomplexwpe PartType ann:
! .httpia’flocalhost: simpleType ReferenceType anr:
Siiies ﬁcomplexwpe ActionsType ann:
ﬁcomplexType RejectionType ann;
ﬁcomplexwpe ShippinginstructionsType ann: Elm Com 4| »
zimpleType moneyType ann:
zimpleType quantityType anr: Details - X
i | | 7 zimpleType UserType ann: m
simpleType RequestorType ann; ype Purct= ]
Info  x simpleType CostCenterType ann: cortent | complex
simpleType VendorType ann: derivedBy -
zimpleType PurchaseOrderlumberType an. Tmixed |
zimplaType SpeciallnstructionsType ann: substGrp -]
simpleType HameType Ann: abstract |
zimpleType AddressType Ann: hillable |
simpleType  TelephoneType ann: bl - ¥
simpleType DateType ann: Detailz
zimpleType CommentsType ann:
simpleType  DescriptionType ann: Facets . x
Attributes l |dentity constraints]
=
‘ MNarme Type Use Default Fired
Text Gnd Schema/W5SDL Authentic Browser

http:fflocalhost: 8080 home/ SCOTT poSaurcefxsd/purchaseOrder  xsd | Facet:
¥MLSPY w2004 rel. 3 U Registered ko Etic Paapanen (Oracle ¥ML DE)  @©1998-2003 Altova GrbH & Altava, Inc.

Registering an XML Schema with Oracle XML DB

For an XML schema to be useful to Oracle XML DB you must first register it with
Oracle XML DB. After it has been registered, it can be used for validating XML
documents and for creating XML Type tables and columns bound to the XML schema.

Two items are required to register an XML schema with Oracle XML DB:
s The XML schema document

= A string that can be used as a unique identifier for the XML schema, after it is
registered with Oracle Database. Instance documents use this unique identifier to
identify themselves as members of the class defined by the XML schema. The
identifier is typically in the form of a URL, and is often referred to as the schema
location hint or document location hint.

You register an XML schema using PL/SQL procedure DBMS_

XMLSCHEMA . registerSchema. Example 3-11 illustrates this. By default, when an
XML schema is registered, Oracle XML DB automatically generates all of the SQL
object types and XMLType tables required to manage the instance documents. An XML
schema can be registered as global or local.

3-24 Oracle XML DB Developer's Guide



Using XML Schema with Oracle XML DB

See Also:

s "Delete and Reload Documents Before Registering Their XML
Schema" on page 7-8 for considerations to keep in mind when
you register an XML schema

= "Local and Global XML Schemas" on page 7-14

s Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_ XMLSCHEMA . registerSchema

Example 3-11 Registering an XML Schema using DBMS_XMLSCHEMA.REGISTERSCHEMA

BEGIN
DBMS_XMLSCHEMA.
SCHEMAURL =>
SCHEMADOC =>
LOCAL =>
GENTYPES =>
GENTABLES =>
END;

registerSchema (
'http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd',
XDBURIType (' /source/schemas/poSource/xsd/purchaseOrder.xsd') .getCLOB(),
TRUE,

TRUE,

TRUE) ;

In Example 3-11, the unique identifier for the XML schema is:
http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd

The XML schema document was previously loaded into Oracle XML DB Repository at
this path: /source/schemas/poSource/xsd/purchaseOrder.xsd.

During XML schema registration, an XDBURIType accesses the content of the XML
schema document, based on its location in the repository. Options passed to procedure
registerSchema specify that the schema in Example 3-11 is to be registered as a
local XML schema, and that SQL objects, and that tables are to be generated during the
registration process.

PL/SQL procedure DBMS_XMLSCHEMA . registerSchema performs the following
operations:

= Parses and validates the XML schema.
»  Creates a set of entries in Oracle Data Dictionary that describe the XML schema.

»  Creates a set of SQL object definitions, based on complexType elements defined
in the XML schema.

= Creates an XMLType table for each global element defined by the XML schema.

See Also: "Local and Global XML Schemas" on page 7-14

SQL Types and Tables Created During XML Schema Registration

Example 3-12 illustrates the creation of object types during XML schema registration
with Oracle XML DB.

Example 3-12 Objects Created During XML Schema Registration

DESCRIBE purchaseorder_t
purchaseorder_t is NOT FINAL

Name

SYS_XDBPDS
REFERENCE
ACTIONS

XDB.XDBSRAW_LIST_T
VARCHAR2 (30 CHAR)
ACTIONS_T

Using Oracle XML DB 3-25



Using XML Schema with Oracle XML DB

REJECTION

REQUESTOR

USERID

COST_CENTER
SHIPPING_INSTRUCTIONS
SPECIAL_INSTRUCTIONS
LINEITEMS

DESCRIBE lineitems_t
lineitems_t is NOT FINAL
Name Null?

SYS_XDBPDS$
LINEITEM

DESCRIBE lineitem v

lineitem_v VARRAY(2147483647) OF LINEITEM_T
LINEITEM_T is NOT FINAL

Name Null?

SYS_XDBPD$
ITEMNUMBER
DESCRIPTION
PART

REJECTION_T

VARCHAR2 (128 CHAR)
VARCHAR2 (10 CHAR)
VARCHAR2 (4 CHAR)
SHIPPING_INSTRUCTIONS_T
VARCHAR2 (2048 CHAR)
LINEITEMS_T

XDB.XDBSRAW_LIST_T
LINEITEM_V

XDB.XDBSRAW_LIST_T
NUMBER (38)
VARCHAR2 (256 CHAR)
PART_T

This example shows that SQL type definitions were created when the XML schema
was registered with Oracle XML DB. These SQL type definitions include:

» purchaseorder_t. This type is used to persist the SQL objects generated from a
PurchaseOrder element. When an XML document containing a
PurchaseOrder element is stored in Oracle XML DB the document is broken up,
and the contents of the document are stored as an instance of purchaseorder_t.

» lineitems_t, lineitem v, and lineitem_t. These types manage the
collection of LineItem elements that may be present in a PurchaseOrder
document. Type lineitems_t consists of a single attribute 1ineitem, defined as
an instance of type lineitem_v. Type lineitem_v is defined as a varray of
linteitem_t objects. There is one instance of the 1ineitem_t object for each
LineItem element in the document.

Working with Large XML Schemas

Several issues can arise when working with large, complex XML schemas.

Sometimes, you encounter one of these errors when you register an XML schema or
you create a table that is based on a global element defined by an XML schema:

s ORA-01792: maximum number of columns in a table or view is

1000
= ORA-04031:

unable to allocate stringbytes of shared memory

("string", "string","string", "string')

These errors are raised when an attempt is made to create an XML Type table or column
based on a global element and the global element is defined as a complexType that
contains a very large number of element and attribute definitions.

The errors are raised only when creating an XMLType table or column that uses
object-relational storage. In this case, the table or column is persisted using a SQL type,
and each object attribute defined by the SQL type counts as one column in the
underlying table. If the SQL type contains object attributes that are based on other SQL
types, then the attributes defined by those types also count as columns in the

underlying table.

3-26 Oracle XML DB Developer's Guide



Using XML Schema with Oracle XML DB

If the total number of object attributes in all of the SQL types exceeds the Oracle
Database limit of 1000 columns in a table, then the storage table cannot be created.
When the total number of elements and attributes defined by a complexType reaches
1000, it is not possible to create a single table that can manage the SQL objects that are
generated when an instance of that type is stored in the database.

Tip: You can use the following query to determine the number of
columns for a given XMLType table stored object-relationally:

SELECT count (*) FROM USER_TAB_COLS WHERE TABLE_NAME = '<the table>'
where <the table> is the table you want to check.

Error ORA-01792 reports that the 1000-column limit has been exceeded. Error
ORA-04031 reports that memory is insufficient during the processing of a large
number of element and attribute definitions.

To resolve this problem of having too many element and attribute definitions, you
must reduce the total number of object attributes in the SQL types that are used to
create the storage tables.

There are two ways to achieve this reduction:

»  Use a top-down technique, with multiple XMLType tables that manage the XML
documents. This reduces the number of SQL attributes in the SQL type hierarchy
for a given storage table. As long as none of the tables need to manage more than
1000 object attributes, the problem is resolved.

= Use a bottom-up technique, which reduces the number of SQL attributes in the
SQL type hierarchy, collapsing some elements and attributes defined by the XML
schema so that they are stored as a single CLOB value.

Both techniques rely on annotating the XML schema to define how a particular
complexType is stored in the database.

For the top-down technique, annotations SQLInline = "false" and
defaultTable force some subelements in the XML document to be stored as rows in
a separate XMLType table. Oracle XML DB maintains the relationship between the two
tables using a REF of XMLType. Good candidates for this approach are XML schemas
that do either of the following:

s Define a choice, where each element within the choice is defined as a
complexType

= Define an element based on a complexType that contains a large number of element
and attribute definitions

The bottom-up technique involves reducing the total number of attributes in the SQL
object types by choosing to store some of the lower-level complexType elements as
CLOB values, rather than as objects. This is achieved by annotating the complexType
or the usage of the complexType with SQLType = "CLOB".

Which technique you use depends on the application and the type of queries and
updates to be performed against the data.

Working with Global Elements

By default, when an XML schema is registered with the database, Oracle XML DB
generates a default table for each global element defined by the XML schema.

You can use attribute xdb: defaultTable to specify the name of the default table for
a given global element. Each xdb:defaultTable attribute value you provide must

Using Oracle XML DB 3-27



Using XML Schema with Oracle XML DB

be unique among all schemas registered by a given database user. If you do not supply a
nonempty default table name for some element, then a unique name is provided
automatically.

In practice, however, you do not want to create a default table for most global
elements. Elements that never serve as the root element for an XML instance document
do not need default tables—such tables are never used. Creating default tables for all
global elements can lead to significant overhead in processor time and space used,
especially if an XML schema contains a large number of global element definitions.

As a general rule, then, you want to prevent the creation of a default table for any
global element (or any local element stored out of line) that you are sure will not be
used as a root element in any document. You can do this in one of the following ways:

= Add the annotation xdb:defaultTable = "" (empty string) to the definition of
each global element that will not appear as the root element of an XML instance
document. Using this approach, you allow automatic default-table creation, in
general, and you prohibit it explicitly where needed, using xdb:defaultTable

= Set parameter GENTABLES to FALSE when registering the XML schema, and then
manually create the default table for each global element that can legally appear as
the root element of an instance document. Using this approach, you inhibit
automatic default-table creation, and you create only the tables that are needed, by
hand.

Creating XML Schema-Based XMLType Columns and Tables

After an XML schema has been registered with Oracle XML DB, it can be referenced
when defining tables that contain XMLType columns or creating XMLType tables.

If you specify no storage model when creating an XMLType table or column for XML
schema-based data, then the storage model used is that specified during registration of
the referenced XML schema. If no storage model was specified for the XML schema
registration, then object-relational storage is used.

Example 3-13 shows how to manually create table purchaseorder, the default table
for PurchaseOrder elements.

Example 3-13 Creating an XMLType Table that Conforms to an XML Schema

CREATE TABLE purchaseorder OF XMLType
XMLSCHEMA "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd"
ELEMENT "PurchaseOrder"
VARRAY "XMLDATA"."ACTIONS"."ACTION"
STORE AS TABLE action_table
((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC ARRAY INDEXS$)))
VARRAY "XMLDATA"."LINEITEMS"."LINEITEM"
STORE AS TABLE lineitem table
((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY INDEXS$)));

Each member of the varray that manages the collection of Action elements is stored
in the ordered collection table action_table. Each member of the varray that
manages the collection of LineItem elements is stored as a row in ordered collection
table 1ineitem_table. The ordered collection tables are heap-based. Because of the
PRIMARY KEY specification, they automatically contain pseudocolumn NESTED_
TABLE_ID and column SYS_NC_ARRAY_INDEXS$, which are required to link them
back to the parent column.

3-28 Oracle XML DB Developer's Guide



Using XML Schema with Oracle XML DB

This CREATE TABLE statement is equivalent to the CREATE TABLE statement that is
generated automatically by Oracle XML DB when you set parameter GENTABLES to
TRUE during XML schema registration. By default, the value of XML schema
annotation storevVarrayAsTable is true, which automatically generates ordered
collection tables (OCTs) for collections during XML schema registration. These OCTs
are given system-generated names, which can be difficult to work with. You can give
them more meaningful names using the SQL statement RENAME TABLE.

The CREATE TABLE statement in Example 3-13 corresponds to a purchase-order
document with a single level of nesting: The varray that manages the collection of
LineItem elements is ordered collection table 1ineitem_ table.

What if you had a different XML schema that had, say, a collection of Shipment
elements inside a Shipments element that was, in turn, inside a LineItem element?
In that case, you could create the table manually as shown in Example 3-14.

Example 3-14 Creating an XMLType Table for Nested Collections

CREATE TABLE purchaseorder OF XMLType
XMLSCHEMA "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd"
ELEMENT "PurchaseOrder"
VARRAY "XMLDATA"."ACTIONS"."ACTION"
STORE AS TABLE action_table
((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEXS$)))
VARRAY "XMLDATA"."LINEITEMS"."LINEITEM"
STORE AS TABLE lineitem_table
((PRIMARY KEY (NESTED_TABLE_ID, SYS NC_ARRAY INDEXS))
VARRAY "SHIPMENTS"."SHIPMENT"
STORE AS TABLE shipments_table
( (PRIMARY KEY (NESTED_TABLE_ID,
SYS_NC_ARRAY_INDEXS))));

A SQL*Plus DESCRIBE statement can be used to view information about an XMLType
table, as shown in Example 3-15.

Example 3—-15 Using DESCRIBE with an XML Schema-Based XMLType Table

DESCRIBE purchaseorder
Name Null? Type

TABLE of SYS.XMLTYPE (XMLSchema
"http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd"
Element "PurchaseOrder") STORAGE Object-relational TYPE "PURCHASEORDER_T"

The output of the DESCRIBE statement of Example 3-15 shows the following
information about table purchaseorder:

s The table is an XMLType table

s The table is constrained to storing PurchaseOrder documents as defined by the
PurchaseOrder XML schema

= Rows in this table are stored as a set of objects in the database

s SQL type purchaseorder_t is the base object for this table

Default Tables

The XML schema in Example 3-13 specifies that the PurchaseOrder table is the
default table for PurchaseOrder elements. When an XML document compliant with
the XML schema is inserted into Oracle XML DB Repository using protocols or

Using Oracle XML DB 3-29



Identifying XML Schema Instance Documents

PL/SQL, the content of the XML document is stored as a row in the purchaseorder
table.

When an XML schema is registered as a global schema, you must grant the
appropriate access rights on the default table to all other users of the database, before
they can work with instance documents that conform to the globally registered XML
schema.

See Also: "Local and Global XML Schemas" on page 7-14

Identifying XML Schema Instance Documents

Before an XML document can be inserted into an XML schema-based XMLType table
or column the document must identify the associated XML schema. There are two
ways to do this:

= Explicitly identify the XML schema when creating the XML Type. This can be done
by passing the name of the XML schema to the XMLType constructor, or by
invoking XMLType method createSchemaBasedXML ().

s Use the XMLSchema-instance mechanism to explicitly provide the required
information in the XML document. This option can be used when working with
Oracle XML DB.

The advantage of the XMLSchema-instance mechanism is that it lets the Oracle
XML DB protocol servers recognize that an XML document inserted into Oracle
XML DB Repository is an instance of a registered XML schema. The content of the
instance document is automatically stored in the default table specified by that XML
schema.

The XML Schema-instance mechanism is defined by the W3C XML Schema working
group. It is based on adding attributes that identify the target XML schema to the root
element of the instance document. These attributes are defined by the
XMLSchema-instance namespace.

To identify an instance document as a member of the class defined by a particular
XML schema you must declare the XML Schema-instance namespace by adding a
namespace declaration to the root element of the instance document. For example:

xmlns:xsi = http://www.w3.org/2001/XMLSchema-instance

Once the XMLSchema-instance namespace has been declared and given a
namespace prefix, attributes that identify the XML schema can be added to the root
element of the instance document. In the preceding example, the namespace prefix for
the XMLSchema-instance namespace was defined as xsi. This prefix can then be
used when adding the XMLSchema-instance attributes to the root element of the
instance document.

Which attributes must be added depends on several factors. There are two
possibilities, noNamespaceSchemaLocation and schemaLocation. Depending on
the XML schema, one or both of these attributes is required to identify the XML
schemas that the instance document is associated with.

Attributes noNamespaceSchemalocation and schemaLocation

If the target XML schema does not declare a target namespace, the
noNamespaceSchemaLocation attribute is used to identify the XML schema. The
value of the attribute is the schema location hint. This is the unique identifier passed to
PL/SQL procedure DBMS_XMLSCHEMA . registerSchema when the XML schema is
registered with the database.

3-30 Oracle XML DB Developer's Guide



Enforcing XML Data Integrity using the Database

For XML schema purchaseOrder . xsd, the correct definition of the root element of
the instance document would read as follows:

<PurchaseOrder
xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xXs1:noNamespaceSchemaLocation=
"http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">

If the target XML schema declares a target namespace, then the schemal.ocation
attribute is used to identify the XML schema. The value of this attribute is a pair of
values separated by a space:

» the value of the target namespace declared in the XML schema

» the schema location hint, the unique identifier passed to procedure DBMS_
XMLSCHEMA . registerSchema when the schema is registered with the database

For example, assume that the PurchaseOrder XML schema includes a target
namespace declaration. The root element of the schema would look like this:

<xs:schema targetNamespace="http://demo.oracle.com/xdb/purchaseOrder"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xdb="http://xmlns.oracle.com/xdb"
version="1.0" xdb:storeVarrayAsTable="true">
<xs:element name="PurchaseOrder" type="PurchaseOrderType"
xdb:defaultTable="PURCHASEORDER" />

In this case, the correct form of the root element of the instance document would read
as follows:

<PurchaseOrder
xnlns="http://demo.oracle.com/xdb/purchaseOrder"
xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xsi:schemaLocation=
"http://demo.oracle.com/xdb/purchaseOrder
http://mdrake-lap:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">

Dealing with Multiple Namespaces

When the XML schema includes elements defined in multiple namespaces, an entry
must occur in the schemaLocation attribute for each of the XML schemas. Each
entry consists of the namespace declaration and the schema location hint. The entries are
separated from each other by one or more whitespace characters. If the primary XML
schema does not declare a target namespace, then the instance document also needs to
include a noNamespaceSchemaLocation attribute that provides the schema location
hint for the primary XML schema.

Enforcing XML Data Integrity using the Database

One advantage of using Oracle XML DB to manage XML content is that SQL can be
used to supplement the functionality provided by XML schema. Combining the power
of SQL and XML with the ability of the database to enforce rules makes the database a
powerful framework for managing XML content.

Only well-formed XML documents can be stored in XMLType tables or columns. A
well-formed XML document is one that conforms to the syntax of the XML version
declared in its XML declaration. This includes having a single root element, properly
nested tags, and so forth. Additionally, if the XMLType table or column is constrained
to an XML schema, only documents that conform to that XML schema can be stored in
that table or column. Any attempt to store or insert any other kind of XML document

Using Oracle XML DB 3-31



Enforcing XML Data Integrity using the Database

in an XML schema-based XML Type raises an error. Example 3-16 illustrates this.

Example 3—-16 Error From Attempting to Insert an Incorrect XML Document

INSERT INTO purchaseorder
VALUES (XMLType (bfilename ('XMLDIR', 'Invoice.xml'), nls_charset_id('AL32UTF8')))

VALUES (XMLType (bfilename ('XMLDIR', 'Invoice.xml'), nls_charset_id('AL32UTF8')))
*

ERROR at line 2:
ORA-19007: Schema - does not match expected
http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd.

Such an error only occurs when content is inserted directly into an XMLType table. It
indicates that Oracle XML DB did not recognize the document as a member of the
class defined by the XML schema. For a document to be recognized as a member of the
class defined by the schema, the following conditions must be true:

s The name of the XML document root element must match the name of global
element used to define the XML Type table or column.

s The XML document must include the appropriate attributes from the
XMLSchema-instance namespace, or the XML document must be explicitly
associated with the XML schema using the XMLType constructor or XMLType
method createSchemaBasedXML ().

If the constraining XML schema declares a targetNamespace, then the instance
documents must contain the appropriate namespace declarations to place the root
element of the document in the targetNamespace defined by the XML schema.

Note: XML constraints are enforced only within individual XML
documents. Database (SQL) constraints are enforced across sets of
XML documents.

Comparing Partial to Full XML Schema Validation

This section describes the differences between partial and full XML schema validation
used when inserting XML documents into the database.

Partial Validation

For binary XML storage, Oracle XML DB performs a full validation whenever an XML
document is inserted into an XML schema-based XMLType table or column. For all
other models of XML storage, Oracle XML DB performs only a partial validation of the
document. This is because, except for binary XML storage, complete XML schema
validation is quite costly, in terms of performance.

Partial validation ensures only that all of the mandatory elements and attributes are
present, and that there are no unexpected elements or attributes in the document. That
is, it ensures only that the structure of the XML document conforms to the SQL data
type definitions that were derived from the XML schema. Partial validation does not
ensure that the instance document is fully compliant with the XML schema.

Example 3-17 provides an example of failing partial validation while inserting an
XML document into table PurchaseOrder, which is stored object-relationally.

Example 3-17 Error When Inserting Incorrect XML Document (Partial Validation)

INSERT INTO purchaseorder
VALUES (XMLType (bfilename ( 'XMLDIR', 'InvalidElement.xml'),

3-32 Oracle XML DB Developer's Guide



Enforcing XML Data Integrity using the Database

nls_charset_id('AL32UTF8')));

VALUES (XMLType (bfilename (' XMLDIR', 'InvalidElement.xml'),
*

ERROR at line 2:
ORA-30937: No schema definition for 'UserName' (namespace '##local') in parent
' /PurchaseOrder’

Full Validation

Loading XML data into XML schema-based binary XML storage causes full validation
against the target XML schemas. Otherwise, regardless of storage model, you can force
full validation of XML instance documents against an XML schema at any time, using

either of the following:

s Table level CHECK constraint
= PL/SQL BEFORE INSERT trigger

Both approaches ensure that only valid XML documents can be stored in the XMLType
table.

The advantage of a TABLE CHECK constraint is that it is easy to code. The
disadvantage is that it is based on Oracle SQL function XMLisValid, so it can only
indicate whether or not the XML document is valid. If an XML document is invalid, a
TABLE CHECK constraint cannot provide any information as to why it is invalid.

A BEFORE INSERT trigger requires slightly more code. The trigger validates the XML
document by invoking XMLType method schemavalidate (). The advantage of
using schemaValidate () is that the exception raised provides additional
information about what was wrong with the instance document. Using a BEFORE
INSERT trigger also makes it possible to attempt corrective action when an invalid
document is encountered.

Full XML Schema Validation Costs Processing Time and Memory Usage Unless you are using
binary XML storage, full XML schema validation costs processing time and memory.
You should thus perform full XML schema validation only when necessary. If you can
rely on your application to validate an XML document, you can obtain higher overall
throughput with non-binary XML storage, by avoiding the overhead associated with
full validation. If you cannot be sure about the validity of incoming XML documents,
you can rely on the database to ensure that an XMLType table or column contains only
schema-valid XML documents.

Example 3-18 shows how to force a full XML schema validation by adding a CHECK
constraint to an XMLType table. In Example 3-18, the XML document
InvalidReference is a not valid with respect to the XML schema. The XML schema
defines a minimum length of 18 characters for the text node associated with the
Reference element. In this document, the node contains the value
SBELL-20021009, which is only 14 characters long. Partial validation would not
catch this error. Unless the constraint or trigger is present, attempts to insert this
document into the database would succeed.

Example 3-18 Forcing Full XML Schema Validation using a CHECK Constraint
ALTER TABLE purchaseorder

ADD CONSTRAINT validate_purchaseorder

CHECK (XMLIsValid(OBJECT_VALUE) = 1);
Table altered.

INSERT INTO purchaseorder

Using Oracle XML DB 3-33



Enforcing XML Data Integrity using the Database

VALUES (XMLType (bfilename ('XMLDIR', 'InvalidReference.xml'),
nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder

*

ERROR at line 1:
ORA-02290: check constraint (QUINE.VALIDATE_PURCHASEORDER) violated

Pseudocolumn OBJECT_VALUE can be used to access the content of an XMLType table
from within a trigger. Example 3-19 illustrates this, showing how to use a BEFORE
INSERT trigger to validate that the data being inserted into the XMLType table
conforms to the specified XML schema.

Example 3—-19 Enforcing Full XML Schema Validation using a BEFORE INSERT Trigger

CREATE OR REPLACE TRIGGER validate_purchaseorder
BEFORE INSERT ON purchaseorder
FOR EACH ROW
BEGIN
IF (:new.OBJECT_VALUE IS NOT NULL) THEN :new.OBJECT VALUE.schemavalidate();
END IF;
END;
/

INSERT INTO purchaseorder
VALUES (XMLType (bfilename ('XMLDIR', 'InvalidReference.xml'),
nls_charset_id('AL32UTF8')));

VALUES (XMLType( bfilename('XMLDIR', 'InvalidReference.xml'),
*

ERROR at line 2:

ORA-31154: invalid XML document

ORA-19202: Error occurred in XML processing

LSX-00221: "SBELL-20021009" is too short (minimum length is 18)

ORA-06512: at "SYS.XMLTYPE", line 354

ORA-06512: at "QUINE.VALIDATE_ PURCHASEORDER", line 3

ORA-04088: error during execution of trigger 'QUINE.VALIDATE_PURCHASEORDER'

Enforcing Referential Integrity using SQL Constraints

The W3C XML Schema Recommendation defines a powerful language for defining the
contents of an XML document. However, there are some simple data management
concepts that are not currently addressed by the W3C XML Schema Recommendation.
These include the ability to ensure that the value of an element or attribute has either
of these properties:

= Itis unique across a set of XML documents (a UNIQUE constraint).

= Itexists in a particular data source that is outside of the current document
(FOREIGN KEY constraint).

With Oracle XML DB, however, you can enforce such constraints. The mechanisms
that you use to enforce integrity on XML data are the same mechanisms that you use
to enforce integrity on relational data. Simple rules, such as uniqueness and
foreign-key relationships, can be enforced by specifying constraints. More complex
rules can be enforced by specifying database triggers.

Oracle XML DB lets you use the database to enforce business rules on XML content, in
addition to enforcing rules that can be specified using XML Schema constructs. The
database enforces these business rules regardless of whether XML is inserted directly

3-34 Oracle XML DB Developer's Guide



Enforcing XML Data Integrity using the Database

into a table or uploaded using one of the protocols supported by Oracle XML DB
Repository.

Example 3-20, Example 3-21, and Example 3-22 illustrate how you can use SQL
constraints to enforce referential integrity. Example 3-20 defines a uniqueness
constraint on an XMLType table that is stored as binary XML. It defines a virtual
column, using the Reference element in a purchase-order document. The uniqueness
constraint reference_1is_unique ensures that the value of node
/PurchaseOrder/Reference/text () is unique across all documents that are
stored in the table.

See Also: 'Partitioning or Constraining Binary XML Data using
Virtual Columns" on page 3-3

Example 3-20 Constraining a Binary XML Table using a Virtual Column

CREATE TABLE po_binaryxml OF XMLType
XMLTYPE STORE AS BINARY XML
VIRTUAL COLUMNS
(c_reference AS (XMLCast (XMLQuery ('/PurchaseOrder/Reference'’
PASSING OBJECT_VALUE RETURNING CONTENT)
AS VARCHAR2 (32))));

INSERT INTO po_binaryxml SELECT OBJECT_VALUE FROM OE.purchaseorder;
132 rows created.
ALTER TABLE po_binaryxml ADD CONSTRAINT reference_is_unique UNIQUE (c_reference);

INSERT INTO po_binaryxml
VALUES (XMLType (bfilename('XMLDIR', 'DuplicateReference.xml'),
nls_charset_id('AL32UTF8')));
INSERT INTO po_binaryxml

*

ERROR at line 1:
ORA-00001: unique constraint (OE.REFERENCE_IS_UNIQUE) violated

Example 3-21 defines a uniqueness constraint similar to that of Example 3-20, but on
XMLType table purchaseorder in standard database schema OE. In addition, it
defines a foreign-key constraint that requires the User element of each purchase-order
document to be the e-mail address of an employee that is in standard database table
HR.employees. For XML data that is stored object-relationally, such as that in table
OE.purchaseorder, constraints must be specified in terms of object attributes of the
SQL data types that are used to manage the XML content.

Example 3-21 Integrity Constraints and Triggers for an XMLType Table Stored
Object-Relationally

ALTER TABLE purchaseorder
ADD CONSTRAINT reference_is_unique
UNIQUE (XMLDATA."REFERENCE");

ALTER TABLE purchaseorder
ADD CONSTRAINT user_is_valid
FOREIGN KEY (XMLDATA."USERID") REFERENCES hr.employees (email);

INSERT INTO purchaseorder

VALUES (XMLType (bfilename ('XMLDIR', 'purchaseOrder.xml'),
nls_charset_id('AL32UTF8')));

Using Oracle XML DB  3-35



Enforcing XML Data Integrity using the Database

INSERT INTO purchaseorder
VALUES (XMLType (bfilename ('XMLDIR', 'DuplicateReference.xml'),
nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder

*

ERROR at line 1:
ORA-00001: unique constraint (QUINE.REFERENCE_IS_UNIQUE) violated

INSERT INTO purchaseorder
VALUES (XMLType (bfilename ('XMLDIR', 'InvalidUser.xml'),
nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
*

ERROR at line 1:
ORA-02291: integrity constraint (QUINE.USER_IS_VALID) violated - parent key not
found

Just as for Example 3-20, the uniqueness constraint reference_is_unique of
Example 3-21 ensures the uniqueness of the purchase-order Reference element
across all documents stored in the table. The foreign key constraint user_is_valid
here ensures that the value of element User corresponds to a value in column email
of table employees.

The text node associated with the Reference element in the XML document
DuplicateRefernce.xml contains the same value as the corresponding node in
XML document PurchaseOrder . xml. Attempting to store both documents in Oracle
XML DB thus violates the constraint reference_is_unique.

The text node associated with the User element in XML document
InvalidUser.xml contains the value HACKER. There is no entry in the employees
table where the value of column email is HACKER. Attempting to store this document
in Oracle XML DB violates the constraint user _is_valid.

Integrity rules defined using constraints and triggers are also enforced when XML
schema-based XML content is loaded into Oracle XML DB Repository. Example 3-22
illustrates this. It shows that database integrity is also enforced when a protocol, such
as FTP, is used to upload XML schema-based XML content into Oracle XML DB
Repository.

Example 3-22 Enforcing Database Integrity When Loading XML using FTP

$ ftp localhost 2100

Connected to localhost.

220 mdrake-sun FTP Server (Oracle XML DB/Oracle Database 10g Enterprise Edition
Release 10.1.0.0.0 - Beta) ready.

Name (localhost:oraclel(): QUINE

331 Password required for QUINE

Password: password

230 QUINE logged in

ftp> cd /source/schemas

250 CWD Command successful

ftp> put InvalidReference.xml

200 PORT Command successful

150 ASCII Data Connection

550- Error Response

ORA-00604: error occurred at recursive SQL level 1
ORA-31154: invalid XML document

ORA-19202: Error occurred in XML processing

3-36 Oracle XML DB Developer's Guide



DML Operations on XML Content using Oracle XML DB

LSX-00221: "SBELL-20021009" is too short (minimum length is 18)

ORA-06512: at "SYS.XMLTYPE", line 333

ORA-06512: at "QUINE.VALIDATE_PURCHASEORDER", line 3

ORA-04088: error during execution of trigger 'QUINE.VALIDATE_ PURCHASEORDER'
550 End Error Response

ftp> put InvalidElement.xml

200 PORT Command successful

150 ASCII Data Connection

550- Error Response

ORA-30937: No schema definition for 'UserName' (namespace '##local') in parent
'PurchaseOrder"

550 End Error Response

ftp> put DuplicateReference.xml

200 PORT Command successful

150 ASCII Data Connection

550- Error Response

ORA-00604: error occurred at recursive SQL level 1

ORA-00001: unique constraint (QUINE.REFERENCE_IS_UNIQUE) violated

550 End Error Response

ftp> put InvalidUser.xml

200 PORT Command successful

150 ASCII Data Connection

550- Error Response

ORA-00604: error occurred at recursive SQL level 1

ORA-02291: integrity constraint (QUINE.USER_IS_VALID) violated - parent key not
found

550 End Error Response

When an error occurs while a document is being uploaded with a protocol, Oracle
XML DB provides the client with the full SQL error trace. How the error is interpreted
and reported to you is determined by the error-handling built into the client
application. Some clients, such as the command line FIP tool, reports the error
returned by Oracle XML DB, while others, such as Microsoft Windows Explorer, report
a generic error message.

See also:

= "Specifying Relational Constraints on XMLType Tables and Columns"
on page 7-34

s Oracle Database Error Messages

DML Operations on XML Content using Oracle XML DB

Another major advantage of using Oracle XML DB to manage XML content is that it
leverages the power of Oracle Database to deliver powerful, flexible capabilities for
querying and updating XML content, including the following;:

= Retrieving nodes and fragments within an XML document

= Updating nodes and fragments within an XML document

s Creating indexes on specific nodes within an XML document
= Indexing the entire content of an XML document

s Determining whether an XML document contains a particular node

XPath and Oracle XML

Oracle XML DB includes XMLType methods and XML-specific SQL functions. With
these, you can query and update XML content stored in Oracle Database. They use the

Using Oracle XML DB 3-37



Querying XML Content Stored in Oracle XML DB

W3C XPath Recommendation to identify the required node or nodes. Each node in an
XML document can be uniquely identified by an XPath expression.

An XPath expression consists of a slash-separated list of element names, attributes
names, and XPath functions. XPath expressions can contain positions and conditions
that determine which branch of the tree is traversed in determining the target nodes.

By supporting XPath-based methods and functions, Oracle XML DB makes it possible
for XML programmers to query and update XML documents in a familiar,
standards-compliant manner.

Note: Oracle SQL functions and XMLType methods respect the W3C
XPath recommendation, which states that if an XPath expression
targets no nodes when applied to XML data, then an empty sequence
must be returned. An error must not be raised in this case.

The specific semantics of an Oracle SQL function or XMLType method
that applies an XPath expression to XML data determines what is
returned. For example, SQL/XML function XMLQuery returns NULL if
its XPath-expression argument targets no nodes, and the updating
SQL functions, such as deleteXML, return the input XML data
unchanged. An error is never raised if no nodes are targeted, but
updating SQL functions can raise an error if an XPath-expression
argument targets inappropriate nodes, such as attribute nodes or text
nodes.

Querying XML Content Stored in Oracle XML DB

This section describes techniques for querying Oracle XML DB and retrieving XML
content. This section contains these topics:

PurchaseOrder XML Document

Retrieving the Content of an XML Document using Pseudocolumn OBJECT_
VALUE

Accessing Fragments or Nodes of an XML Document using XMLQUERY
Accessing Text Nodes and Attribute Values using XMLCAST and XMLQUERY
Searching an XML Document using XMLEXISTS, XMLCast, and XMLQuery
Performing SQL Operations on XMLType Fragments using XMLTABLE

PurchaseOrder XML Document

Examples in this section are based on the PurchaseOrder XML document shown in
Example 3-23.

Example 3-23 PurchaseOrder XML Instance Document

<PurchaseOrder

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xs1 :noNamespaceSchemal.ocation=
"http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">

<Reference>SBELL-2002100912333601PDT</Reference>

<Actions>
<Action>

<User>SVOLLMAN< /User>

</Action>

3-38 Oracle XML DB Developer's Guide



Querying XML Content Stored in Oracle XML DB

</Actions>
<Reject/>
<Requestor>Sarah J. Bell</Requestor>
<User>SBELL</User>
<CostCenter>S30</CostCenter>
<ShippingInstructions>
<name>Sarah J. Bell</name>
<address>400 Oracle Parkway
Redwood Shores
CA
94065
USA</address>
<telephone>650 506 7400</telephone>
</ShippingInstructions>
<SpeciallInstructions>Air Mail</SpecialInstructions>
<LineItems>
<LineIltem ItemNumber="1">
<Description>A Night to Remember</Description>
<Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltem>
<LineItem ItemNumber="2">
<Description>The Unbearable Lightness Of Being</Description>
<Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
</Lineltem>
<LineIltem ItemNumber="3">
<Description>Sisters</Description>
<Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltem>
</LineIltems>
</PurchaseOrder>

Retrieving the Content of an XML Document using Pseudocolumn OBJECT_VALUE

Pseudocolumn OBJECT_VALUE can be used as an alias for the value of an object table.
For an XMLType table that consists of a single column of XMLType, the entire XML
document is retrieved. (OBJECT_VALUE replaces the value (x) and SYS_NC_
ROWINFOS aliases used in releases prior to Oracle Database10g Release 1.)

In Example 3-24, the SQL*Plus settings PAGESIZE and LONG are used to ensure that
the entire document is printed correctly, without line breaks. (The output has been
formatted for readability.)

Example 3-24 Retrieving an Entire XML Document using OBJECT_VALUE

SET LONG 10000
SET PAGESIZE 100

SELECT OBJECT_VALUE FROM purchaseorder;

OBJECT_VALUE
<PurchaseOrder xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xs1:noNamespaceSchemalLocation="http://localhost:8080/source/schemas
/poSource/xsd/purchaseOrder.xsd">
<Reference>SBELL-2002100912333601PDT</Reference>
<Actions>
<Action>
<User>SVOLLMAN</User>
</Action>
</Actions>

Using Oracle XML DB 3-39



Querying XML Content Stored in Oracle XML DB

<Reject/>
<Requestor>Sarah J. Bell</Requestor>
<User>SBELL</User>
<CostCenter>S30</CostCenter>
<ShippingInstructions>
<name>Sarah J. Bell</name>
<address>400 Oracle Parkway
Redwood Shores
CA
94065
USA</address>
<telephone>650 506 7400</telephone>
</ShippingInstructions>
<SpecialInstructions>Air Mail</SpecialInstructions>
<LineItems>
<LineItem ItemNumber="1">
<Description>A Night to Remember</Description>
<Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltem>
<LineItem ItemNumber="2">
<Description>The Unbearable Lightness Of Being</Description>
<Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
</LinelItem>
<LineItem ItemNumber="3">
<Description>Sisters</Description>
<Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltem>
</LineItems>
</PurchaseOrder>

1 row selected.

Accessing Fragments or Nodes of an XML Document using XMLQUERY

You can use SQL /XML function XMLQuery to extract the nodes that match an XPath
expression. The result is returned as an instance of XMLType. Example 3-25 illustrates

this with several queries.

Example 3-25 Accessing XML Fragments using XMLQUERY

The following query returns an XMLType instance containing the Reference element

that matches the XPath expression.

SELECT XMLQuery ('/PurchaseOrder/Reference' PASSING OBJECT_VALUE RETURNING CONTENT)

FROM purchaseorder;
XMLQUERY (' /PURCHASEORDER/REFERENCE ' PASSINGOBJECT_

<Reference>SBELL-2002100912333601PDT</Reference>

1 row selected.

The following query returns an XMLType instance containing the first LineItem

element in the LineItems collection:

SELECT XMLQuery ('/PurchaseOrder/LinelItems/LineItem[1]"
PASSING OBJECT_VALUE RETURNING CONTENT)
FROM purchaseorder;

XMLQUERY (' /PURCHASEORDER/LINEITEMS/LINEITEM[1] ' PASSINGOBJECT

3-40 Oracle XML DB Developer's Guide



Querying XML Content Stored in Oracle XML DB

<Lineltem ItemNumber="1">

<Description>A Night to Remember</Description>

<Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltem>

1 row selected.

The following query returns an XMLType instance that contains the three
Description elements that match the XPath expression. These elements are returned
as nodes in a single XMLType instance. The XMLType instance does not have a single
root node; it is an XML fragment.

SELECT XMLQuery ('/PurchaseOrder/Lineltems/Lineltem/Description'’
PASSING OBJECT_VALUE RETURNING CONTENT)
FROM purchaseorder;

XMLQUERY (' /PURCHASEORDER/LINEITEMS/LINEITEM/DESCRIPTION ' PASSINGOBJECT

<Description>A Night to Remember</Description>
<Description>The Unbearable Lightness Of Being</Description>
<Description>Sisters</Description>

1 row selected.

See Also: "Performing SQL Operations on XMLType Fragments
using XMLTABLE" on page 3-45

Accessing Text Nodes and Attribute Values using XMLCAST and XMLQUERY

You can access text node and attribute values using SQL /XML standard functions
XMLQuery and XMLCast. To do this, the XPath expression passed to XMLQuery must
uniquely identify a single text node or attribute value within the document — that is, a
leaf node. Example 3-26 illustrates this using several queries.

Example 3-26 Accessing a Text Node Value using XMLCAST and XMLQuery

The following query returns the value of the text node associated with the Reference
element that matches the target XPath expression. The value is returned as a
VARCHAR? value.

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Reference/text ()"’
PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30))
FROM purchaseorder;

XMLCAST (XMLQUERY ( ' $P/PURCHASEO

SBELL-2002100912333601PDT
1 row selected.

The following query returns the value of the text node associated with a
Description element contained in a LineItem element. The particular LineItem
element is specified by its Id attribute value. The predicate that identifies the
LineItemelementis [Part/@Id="715515011020"]. The at-sign character (@)
specifies that Id is an attribute rather than an element. The value is returned as a
VARCHAR?2 value.

SELECT XMLCast (

Using Oracle XML DB 3-41



Querying XML Content Stored in Oracle XML DB

XMLQuery (' Sp/PurchaseOrder/Lineltems/Lineltem[Part/@Id="715515011020"] /Description/text ()"
PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30))
FROM purchaseorder;

XMLCAST (XMLQUERY ( ' SP/PURCHASEO

Sisters
1 row selected.

The following query returns the value of the text node associated with the
Description element contained in the first LineItem element. The first LineItem
element is indicated by the position predicate[1].

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Lineltems/Lineltem[1]/Description’
PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (4000))
FROM purchaseorder;

XMLCAST (XMLQUERY ( ' $P/PURCHASEORDER/LINEITEMS/LINEITEM[1] /DESCRIPTION' PASSINGOBJECT _VALUEAS"P"

A Night to Remember
1 row selected.

See Also:

s "Querying XMLIype Data using SQL /XML Functions XMLEXxists
and XMLCast" on page 4-2 for information on SQL /XML function
XMLCast

s Chapter 5, "Using XQuery with Oracle XML DB" for information
on SQL /XML function XMLQuery

Searching an XML Document using XMLEXISTS, XMLCast, and XMLQuery

SQL/XML standard function XMLExists evaluates whether or not a given document
contains a node that matches a W3C XPath expression. Function XMLExists returns a
Boolean value of true if the document contains the node specified by the XPath
expression supplied to the function and a value of false if it does not. Since XPath
expressions can contain predicates, XMLEx1ists can determine whether or not a given
node exists in the document, and whether or not a node with the specified value exists
in the document.

Similarly, you can use SQL /XML functions XMLCast and XMLQuery in a SQL WHERE
clause to limit the query results to documents that satisfy some property.

Example 3-27 illustrates the use of XMLExists, XMLCast, and XMLQuery to search
for documents.

Example 3-27 Searching XML Content using XMLEXxists, XMLCast, and XMLQuery

The following query uses XMLExists to check if the XML document contains an
element named Reference that is a child of the root element PurchaseOrder:

SELECT count (*) FROM purchaseorder
WHERE XMLExists('S$Sp/PurchaseOrder/Reference' PASSING OBJECT_VALUE AS "p");

3-42 Oracle XML DB Developer's Guide



Querying XML Content Stored in Oracle XML DB

1 row selected.
The following query checks if the value of the text node associated with the
Reference element is SBELL-2002100912333601PDT:

SELECT count (*) FROM purchaseorder
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"'
PASSING OBJECT_VALUE AS "p");

1 row selected.
This query checks whether the value of the text node associated with the Reference

element is SBELL-XXXXXXXXXXXXXXXXXX:

SELECT count (*) FROM purchaseorder
WHERE XMLExists('S$p/PurchaseOrder [Reference="SBELL-XXX XXXXXXX "
PASSING OBJECT_VALUE AS "p");

1 row selected.

This query checks whether the XML document contains a root element
PurchaseOrder that contains a LineItems element that contains a LineItem
element that contains a Part element with an Id attribute.

SELECT count (*) FROM purchaseorder
WHERE XMLExists('Sp/PurchaseOrder/Lineltems/Lineltem/Part/@Id’
PASSING OBJECT_VALUE AS "p");

1 row selected.

The following query checks whether the XML document contains a root element
PurchaseOrder that contains a LineItems element that contains a LineItem
element that contains a Part element with Id attribute value 715515009058.

SELECT count (*) FROM purchaseorder
WHERE XMLExists('$p/PurchaseOrder/Lineltems/LineItem/Part[@Id="715515009058"]"
PASSING OBJECT_VALUE AS "p");

The following query checks whether the XML document contains a root element
PurchaseOrder that contains a LineItems element whose third LineItem element
contains a Part element with Id attribute value 715515009058.

SELECT count (*) FROM purchaseorder
WHERE XMLExists (
'$Sp/PurchaseOrder/Lineltems/LineItem[3] /Part[@Id="715515009058"]"

Using Oracle XML DB 3-43



Querying XML Content Stored in Oracle XML DB

PASSING OBJECT_VALUE AS "p");

1 row selected.

The following query limits the results of the SELECT statement to rows where the text
node associated with element User starts with the letter S. XQuery does not include
support for LIKE-based queries.

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Reference' PASSING OBJECT VALUE AS "p"
RETURNING CONTENT)
AS VARCHAR2(30))
FROM purchaseorder
WHERE XMLCast (XMLQuery ('$p/PurchaseOrder/User' PASSING OBJECT VALUE AS "p"
RETURNING CONTENT)
AS VARCHAR2 (30))
LIKE 'S%';

XMLCAST (XMLQUERY (' $P/PURCHASEORDER
SBELL-20021009123336231PDT
SBELL-20021009123336331PDT
SKING-20021009123336321PDT

36 rows selected.

The following query performs a join based on the values of a node in an XML
document and data in another table.

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Reference' PASSING OBJECT VALUE AS "p"
RETURNING CONTENT)
AS VARCHAR2 (30))
FROM purchaseorder p, hr.employees e
WHERE XMLCast (XMLQuery ('$p/PurchaseOrder/User' PASSING OBJECT VALUE AS "p"
RETURNING CONTENT)
AS VARCHAR2 (30)) = e.email
AND e.employee_id = 100;

XMLCAST (XMLQUERY (' $P/PURCHASEOREDER
SKING-20021009123336321PDT
SKING-20021009123337153PDT
SKING-20021009123335560PDT
SKING-20021009123336952PDT
SKING-20021009123336622PDT
SKING-20021009123336822PDT
SKING-20021009123336131PDT
SKING-20021009123336392PDT
SKING-20021009123337974PDT
SKING-20021009123338294PDT
SKING-20021009123337703PDT
SKING-20021009123337383PDT
SKING-20021009123337503PDT

13 rows selected.

The following query uses XMLExists to limit the results of a SELECT statement to
rows where the text node of element User contains the value SBELL.

3-44 Oracle XML DB Developer's Guide



Querying XML Content Stored in Oracle XML DB

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Reference' PASSING OBJECT VALUE AS "p"
RETURNING CONTENT)
AS VARCHAR2 (30)) "Reference"
FROM purchaseorder
WHERE XMLExists ('S$p/PurchaseOrder [User="SBELL"]' PASSING OBJECT VALUE AS "p");

Reference

SBELL-20021009123336231PDT
SBELL-20021009123336331PDT
SBELL-20021009123337353PDT
SBELL-20021009123338304PDT
SBELL-20021009123338505PDT
SBELL-20021009123335771PDT
SBELL-20021009123335280PDT
SBELL-2002100912333763PDT

SBELL-2002100912333601PDT

SBELL-20021009123336362PDT
SBELL-20021009123336532PDT
SBELL-20021009123338204PDT
SBELL-20021009123337673PDT

13 rows selected.

Example 3-28 uses SQL /XML functions XMLQuery and XMLExists to find the
Reference element for any PurchaseOrder element whose first LineItem element
contains an order for the item with Id 715515009058. Function XMLExists is used
in the WHERE clause to determine which rows are selected, and XMLQuery is used in
the SELECT list to control which part of the selected documents appears in the result.

Example 3-28 Finding the Reference for a Purchase Order using XMLQuery and XMLEXxists

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Reference' PASSING OBJECT VALUE AS "p"
RETURNING CONTENT)
AS VARCHAR2 (30)) "Reference"
FROM purchaseorder
WHERE XMLExists('$p/PurchaseOrder/Lineltems/LineItem[1]/Part[@Id="715515009058"]"
PASSING OBJECT_VALUE AS "p");

Reference

SBELL-2002100912333601PDT
1 row selected.

See Also:

s "Querying XMLType Data using SQL /XML Functions XMLEXxists
and XMLCast" on page 4-2 for information on SQL/XML
functions XMLCast and XMLExists

»  Chapter 5, "Using XQuery with Oracle XML DB" for information
on SQL /XML function XMLQuery

Performing SQL Operations on XMLType Fragments using XMLTABLE

Example 3-25 demonstrates how to extract an XMLType instance that contains the
node or nodes that match an XPath expression. When the document contains multiple
nodes that match the supplied XPath expression, such a query returns an XML

Using Oracle XML DB  3-45



Querying XML Content Stored in Oracle XML DB

fragment that contains all of the matching nodes. Unlike an XML document, an XML
fragment has no single element that is the root element.

This kind of result is common in these cases:

= When you retrieve the set of elements contained in a collection, in which case all
nodes in the fragment are of the same type — see Example 3-29

= When the target XPath expression ends in a wildcard, in which case the nodes in
the fragment can be of different types — see Example 3-31

You can use SQL /XML function XMLTable to break up an XML fragment contained in
an XMLType instance, inserting the collection-element data into a new, virtual table,
which you can then query using SQL—in a join expression, for example. In particular,
converting an XML fragment into a virtual table makes it easier to process the result of
evaluating an XMLQuery expression that returns multiple nodes.

Example 3-29 shows how to access the text nodes for each Description element in
the PurchaseOrder document. It breaks up the single XML Fragment output from
Example 3-25 into multiple text nodes.

Example 3-29 Accessing Description Nodes using XMLTABLE

SELECT des.COLUMN_VALUE
FROM purchaseorder p,
XMLTable ('/PurchaseOrder/Lineltems/Lineltem/Description’
PASSING p.OBJECT_VALUE) des
WHERE XMLExists('$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

COLUMN_VALUE

<Description>A Night to Remember</Description>
<Description>The Unbearable Lightness Of Being</Description>
<Description>Sisters</Description>

3 rows selected.

To use SQL to process the contents of the text nodes, Example 3-29 converts the
collection of Description nodes into a virfual table, using SQL /XML function
XMLTable. The virtual table has three rows, each of which contains a single XMLType
instance with a single Description element.

The XPath expression targets the Description elements. The PASSING clause says to
use the contents (OBJECT_VALUE) of XML Type table purchaseorder as the context
for evaluating the XPath expression.

The XMLTable expression thus depends on the purchaseorder table. This is a left
lateral join. This correlated join ensures a one-to-many (1:N) relationship between the
purchaseorder row accessed and the rows generated from it by XMLTable. Because
of this correlated join, the purchaseorder table must appear before the XMLTable
expression in the FROM list. This is a general requirement in any situation where the
PASSING clause refers to a column of the table.

Each XMLType instance in the virtual table contains a single Description element.
You can use the COLUMNS clause of XML Table to break up the data targeted by the
XPath expression 'Description' into a column named description of SQL data
type VARCHAR2 (256). The 'Description' expression that defines this column is
relative to the context XPath expression,

' /PurchaseOrder/Lineltems/Lineltem'.

3-46 Oracle XML DB Developer's Guide



Querying XML Content Stored in Oracle XML DB

SELECT des.description
FROM purchaseorder p,
XMLTable (' /PurchaseOrder/Lineltems/Lineltem' PASSING p.OBJECT_VALUE
COLUMNS description VARCHAR2(256) PATH 'Description') des
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

DESCRIPTION

A Night to Remember

The Unbearable Lightness Of Being
Sisters

3 rows selected.

The COLUMNS clause lets you specify precise SQL data types, which can make static
type-checking more helpful. This example uses only a single column (description).
To expose data that is contained at multiple levels in an XMLType table as individual
rows in a relational view, apply XMLTable to each document level to be broken up
and stored in relational columns. See Example 3-33 for an example.

Example 3-30 counts the number of elements in a collection. It also shows how SQL
keywords such as ORDER BY and GROUP BY can be applied to the virtual table data
created by SQL/XML function XMLTable.

Example 3-30 Counting the Number of Elements in a Collection using XMLTABLE

SELECT reference, count(*)

FROM purchaseorder,

XMLTable (' /PurchaseOrder' PASSING OBJECT VALUE

COLUMNS reference VARCHAR2 (32) PATH 'Reference',
lineitem XMLType PATH 'Lineltems/Lineltem'),

XMLTable ('LineItem' PASSING lineitem)

WHERE XMLExists('S$Sp/PurchaseOrder [User="SBELL"]"'
PASSING OBJECT_VALUE AS "p")

GROUP BY reference
ORDER BY reference;

REFERENCE COUNT (*)
SBELL-20021009123335280PDT 20
SBELL-20021009123335771PDT 21
SBELL-2002100912333601PDT 3
SBELL-20021009123336231PDT 25
SBELL-20021009123336331PDT 10
SBELL-20021009123336362PDT 15
SBELL-20021009123336532PDT 14
SBELL-20021009123337353PDT 10
SBELL-2002100912333763PDT 21
SBELL-20021009123337673PDT 10
SBELL-20021009123338204PDT 14
SBELL-20021009123338304PDT 24
SBELL-20021009123338505PDT 20

13 rows selected.

The query in Example 3-30 locates the set of XML documents that match the XPath
expression to SQL/XML function XMLExists. It generates a virtual table with two
columns:

Using Oracle XML DB  3-47



Accessing XML Data in Oracle XML DB using Relational Views

s reference, containing the Reference node for each document selected
= lineitem, containing the set of LineItem nodes for each document selected

It counts the number of LineItemnodes for each document. A correlated join ensures
that the GROUP BY correctly determines which LineItem elements belong to which
PurchaseOrder element.

Example 3-31 shows how to use SQL/XML function XMLTable to count the number
of child elements of a given element. The XPath expression passed to XMLTable
contains a wildcard (*) that matches all elements that are direct descendants of a
PurchaseOrder element. Each row of the virtual table created by XMLTable contains
a node that matches the XPath expression. Counting the number of rows in the virtual
table provides the number of element children of element PurchaseOrder.

Example 3-31 Counting the Number of Child Elements in an Element using XMLTABLE

SELECT count (*)
FROM purchaseorder p, XMLTable('/PurchaseOrder/*' PASSING p.OBJECT_VALUE)
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

1 row selected.

Accessing XML Data in Oracle XML DB using Relational Views

You can use the XML-specific functions and methods provided by Oracle XML DB to
create conventional relational views that provide relational access to XML content. This
lets programmers, tools, and applications that understand Oracle Database, but not
XML, to work with XML content stored in the database.

The relational views can use XPath expressions and SQL/XML query and access
functions such as XMLTable to define a mapping between columns in the view and
nodes in the XML document. For performance reasons, this approach is recommended
only when XML documents are stored using structured (object-relational) or binary
XML storage, not when stored as CLOB instances.

See Also:

»  Chapter 4, "XMLType Operations" for a description of XMLType
data type and functions

m http://www.w3.org/TR/xpath for information about
XPath 1.0

m http://www.w3.org/TR/xpath20/ for information about
XPath 2.0

s http://www.w3.0rg/TR/2002/NOTE-unicode-xml-200202

18/ for information about using Unicode in XML

Breaking Up a Single Level of XML Data

When you need to expose each document in an XMLType table as a row in a relational
view, you can use this technique:

3-48 Oracle XML DB Developer's Guide



Accessing XML Data in Oracle XML DB using Relational Views

1. Define the set of columns that make up the view, using CREATE OR REPLACE
VIEW.

2. Map the nodes in the XML document to the columns defined by the view. You do
this by extracting the nodes using SQL /XML function XMLTable with
appropriate XPath expressions.

This technique can be used whenever there is a one-to-one (1:1) relationship between
documents in the XMLType table and the rows in the view.

Example 3-32 shows how to create a simple relational view, purchaseorder_
master_view, that exposes XML content. There is one row in the view for each row
in XMLType table purchaseorder.

Example 3-32 Creating a Relational View of XML Content

CREATE OR REPLACE VIEW purchaseorder_master_view AS

SELECT po.*
FROM purchaseorder pur,
XMLTable (

'Sp/PurchaseOrder' PASSING pur.OBJECT_VALUE as "p"

COLUMNS
reference VARCHAR2 (30) PATH 'Reference’,
requestor VARCHAR2 (128) PATH 'Requestor',
userid VARCHAR2 (10) PATH 'User',
costcenter VARCHAR2 (4) PATH 'CostCenter',
ship_to_name VARCHAR2 (20) PATH 'ShippingInstructions/name’,
ship_to_address VARCHAR2 (256) PATH 'ShippingInstructions/address',
ship_to_phone  VARCHAR2 (24) PATH 'ShippingInstructions/telephone',
instructions VARCHAR2 (2048) PATH 'Speciallnstructions') po;

View created.

DESCRIBE purchaseorder_master_view

Name Null? Type
REFERENCE VARCHAR2 (30)
REQUESTOR VARCHAR2 (128)
USERID VARCHAR2 (10)
COSTCENTER VARCHAR2 (4)
SHIP_TO_NAME VARCHAR2 (20)
SHIP_TO_ADDRESS VARCHAR2 (256)
SHIP_TO_PHONE VARCHAR2 (24)
(

INSTRUCTIONS

Breaking Up Multiple Levels of XML Data

When you need to expose data contained at multiple levels in an XMLType table as
individual rows in a relational view, you use the same general approach as for
breaking up a single level: 1) define the columns making up the view, and 2) map the
XML nodes to the columns. However, in this case you apply XMLTable, to each
document level that is to be broken up and stored in relational columns.

This technique can be used whenever there is a one-to-many (1:N) relationship
between documents in the XMLType table and the rows in the view.

For example, each PurchaseOrder element contains a LineItems element, which in
turn contains one or more LineItem elements. Each LineItem element has child
elements, such as Description, and an ItemNumber attribute. To make such

Using Oracle XML DB 3-49



Accessing XML Data in Oracle XML DB using Relational Views

lower-level data accessible as a relational value, you must break up both the
PurchaseOrder element and the LineItem collection. Each such decomposition is
done with XMLTable. When element PurchaseOrder is broken up, the LineItem
element is mapped to a relational column of type XMLType, which contains an XML
fragment. That column is then passed to the second call to XMLType, to be broken into
its various parts as multiple rows of relational values.

Example 3-33 illustrates this. It shows how to use SQL /XML function XMLTable for a
one-to-many (1:N) relationship between the documents in XMLType table
purchaseorder and the view rows. The view provides access to the individual
members of a collection, and exposes the collection members as a set of rows.

Example 3-33 Accessing Individual Members of a Collection using a View

CREATE OR REPLACE VIEW purchaseorder_detail_view AS
SELECT po.reference, 1i.*
FROM purchaseorder p,
XMLTable('/PurchaseOrder' PASSING p.OBJECT_VALUE

COLUMNS
reference VARCHAR2 (30) PATH 'Reference',
lineitem XMLType PATH 'Lineltems/Lineltem') po,
XMLTable (' /Lineltem' PASSING po.lineitem
COLUMNS
itemno NUMBER (38) PATH '@ItemNumber',
description VARCHAR2 (256) PATH 'Description',
partno VARCHAR2 (14) PATH 'Part/@Id',

quantity NUMBER (12, 2) PATH 'Part/@Quantity',
unitprice NUMBER (8, 4) PATH 'Part/@QUnitPrice') 1i;

View created.

DESCRIBE purchaseorder_detail_view

Name Null? Type
REFERENCE VARCHAR2 (30)
ITEMNO NUMBER (38)
DESCRIPTION VARCHAR2 (256)
PARTNO VARCHAR2 (14)
QUANTITY NUMBER (12,2)
UNITPRICE NUMBER (8, 4)

In Example 3-33, there is one row in view purchaseorder_detail_view for each
LineItem element in the XML documents stored in XML Type table purchaseorder.

The CREATE OR REPLACE VIEW statement defines the set of columns that make up
the view. The SELECT statement passes the purchaseorder table as context to
function XMLTable, to create the virtual table p, which has columns reference and
lineitem. These columns contain the Reference and LineItem elements of the
purchase-order documents, respectively.

Column lineitem contains a collection of LineItem elements, as an XMLType
instance—one row for each LineItem element. These rows are in turn passed to a
second XMLTable expression, to serve as its context. This second XMLTable
expression creates a virtual table of line-item rows, with columns corresponding to
various descendant nodes of element LineItem. Most of these descendants are
attributes (ItemNumber, Part/@Id, and so on). One of the descendants is the
Description child element.

The Reference element is included in view purchaseorder_detail_viewas
column reference. It provides a foreign key that can be used to joins rows in view

3-50 Oracle XML DB Developer's Guide



Accessing XML Data in Oracle XML DB using Relational Views

purchaseorder_detail_view to the corresponding row in view
purchaseorder_master_view. The correlated join in the CREATE VIEW statement
ensures that the one-to-many (1:N) relationship between the Reference element and
the associated LineItem elements is maintained whenever the view is accessed.

Querying XML Content As Relational Data

The examples in this section show relational queries of XML data. They point out some
of the benefits provided by creating relational views over XMLType tables and
columns.

Example 3-34 shows how to query master and detail relational views of XML data.

Example 3-34 Querying XML Data using Views

The following simple query against a master view uses a conventional SELECT
statement to return the rows where the userid column starts with s.

SELECT reference, costcenter, ship_to_name
FROM purchaseorder master_view
WHERE userid LIKE 'S%';

REFERENCE COST SHIP_TO_NAME
SBELL-20021009123336231PDT S30 Sarah J. Bell
SBELL-20021009123336331PDT S30 Sarah J. Bell
SKING-20021009123336321PDT Al0 Steven A. King

36 rows selected.

The following query is based on a join between the master view and the detail view. A
conventional SELECT statement finds the purchaseorder_detail_view rows
where the value of column itemno is 1 and the corresponding purchaseorder_
master_view row contains a userid column with the value SBELL.

SELECT d.reference, d.itemno, d.partno, d.description
FROM purchaseorder_detail_view d, purchaseorder_master_ view m
WHERE m.reference = d.reference
AND m.userid = 'SBELL'
AND d.itemno = 1;

REFERENCE ITEMNO PARTNO DESCRIPTION
SBELL-20021009123336231PDT 37429165829 Juliet of the Spirits
SBELL-20021009123336331PDT 715515009225 Salo
SBELL-20021009123337353PDT 37429141625 The Third Man
SBELL-20021009123338304PDT 715515009829  Nanook of the North
SBELL-20021009123338505PDT 37429122228 The 400 Blows
SBELL-20021009123335771PDT 37429139028 And the Ship Sails on
SBELL-20021009123335280PDT 715515011426  All That Heaven Allows
SBELL-2002100912333763PDT 715515010320 Life of Brian - Python
SBELL-2002100912333601PDT 715515009058 A Night to Remember
SBELL-20021009123336362PDT 715515012928 In the Mood for Love
SBELL-20021009123336532PDT 37429162422 Wild Strawberries
SBELL-20021009123338204PDT 37429168820 Red Beard
SBELL-20021009123337673PDT 37429156322 Cries and Whispers

e = Y YT SN N

13 rows selected.

Using Oracle XML DB 3-51



Updating XML Content Stored in Oracle XML DB

The views in Example 3-34 look and act like standard relational views. They can be
queried using standard relational syntax. No XML-specific syntax is required in either
the query or the generated result set.

By exposing XML content as relational data, Oracle XML DB lets you apply advanced
database features, such as business intelligence and analytic capabilities, to XML
content, even if such features themselves are not XML-aware.

Example 3-35 shows how to use relational views over XML content to perform
business-intelligence queries on XML documents. The example query selects
PurchaseOrder documents that contain orders for titles identified by UPC codes
715515009058 and 715515009126.

Example 3-35 Business-Intelligence Query of XML Data using a View

SELECT partno, count(*) "No of Orders", quantity "No of Copies"
FROM purchaseorder_detail_view
WHERE partno IN (715515009126, 715515009058)
GROUP BY rollup(partno, quantity);

PARTNO No of Orders No of Copies
715515009058 7
715515009058 9
715515009058 5
715515009058 2
715515009058 23
715515009126 4
715515009126 7
715515009126 11

w =

9 rows selected.

The query in Example 3-35 determines the number of copies of each title that are
ordered in each PurchaseOrder document. For part number 715515009126, there
are four PurchaseOrder documents where one copy of the item is ordered and seven
PurchaseOrder documents where three copies of the item are ordered.

Updating XML Content Stored in Oracle XML DB

Oracle XML DB lets update operations take place on XML content. Update operations
can either replace the entire contents of a document or parts of a document. The ability
to perform partial updates on XML documents is very powerful, particularly when
you make small changes to large documents, as it can significantly reduce the amount
of network traffic and disk input-output required to perform the update.

SQL function updateXML enables partial update of an XML document stored as an
XMLType instance. It lets multiple changes be made to the document in a single
operation. Each change consists of an XPath expression that identifies a node to be
updated, and the new value for the node.

Example 3-36 uses SQL function updateXML to update the text node associated with
element User.

Example 3-36 Updating XML Content using UPDATEXML

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/User' PASSING OBJECT VALUE AS "p"
RETURNING CONTENT)
AS VARCHAR2 (60))
FROM purchaseorder

3-52 Oracle XML DB Developer's Guide



Updating XML Content Stored in Oracle XML DB

WHERE XMLExists ('S$Sp/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

XMLCAST (XMLQUERY ( ' $P/PURCHAS

1 row selected.

UPDATE purchaseorder
SET OBJECT_VALUE =
updateXML (OBJECT VALUE, '/PurchaseOrder/User/text()', 'SKING')
WHERE XMLExists ('S$Sp/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

1 row updated.

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/User' PASSING OBJECT_VALUE AS "p"
RETURNING CONTENT)
AS VARCHAR2 (60))
FROM purchaseorder
WHERE XMLExists('$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

XMLCAST (XMLQUERY ( ' SP/PURCHAS

1 row selected.

Example 3-37 uses SQL function updateXML to replace an entire element within an
XML document. The XPath expression references the element, and the replacement
value is passed as an XMLType object.

Example 3-37 Replacing an Entire Element using UPDATEXML

SELECT XMLQuery ('Sp/PurchaseOrder/Lineltems/Lineltem[1]"
PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder
WHERE XMLExists ('S$Sp/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

XMLQUERY (' $P/PURCHAS
<Lineltem ItemNumber="1">

<Description>A Night to Remember</Description>

<Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltem>

1 row selected.

UPDATE purchaseorder
SET OBJECT_VALUE =
updateXML (
OBJECT_VALUE,
' /PurchaseOrder/Lineltems/LineItem[1] ",
XMLType ('<LineItem ItemNumber="1">
<Description>The Lady Vanishes</Description>
<Part Id="37429122129" UnitPrice="39.95" Quantity="1"/>
</LineItem>'))

Using Oracle XML DB  3-53



Updating XML Content Stored in Oracle XML DB

WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

1 row updated.

SELECT XMLQuery ('Sp/PurchaseOrder/Lineltems/Lineltem[1]"'
PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder
WHERE XMLExists ('S$Sp/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

XMLQUERY (' $P/PURCHAS
<LineItem ItemNumber="1">

<Description>The Lady Vanishes</Description>

<Part Id="37429122129" UnitPrice="39.95" Quantity="1"/>
</LineItem>

1 row selected.

Example 3-38 illustrates the common mistake of using SQL function updateXML to
update a node that occurs multiple times in a collection. The UPDATE statement sets the
value of the text node of a Description element to The Wizard of 0z, where the
current value of the text node is Sisters. The statement includes an XMLExists
expression in the WHERE clause that identifies the set of nodes to be updated.

Example 3-38 Incorrectly Updating a Node That Occurs Multiple Times in a Collection

SELECT XMLCast (des.COLUMN_VALUE AS VARCHAR2 (256)
FROM purchaseorder,
XMLTable ('$p/PurchaseOrder/Lineltems/Lineltem/Description’
PASSING OBJECT VALUE AS "p") des
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

XMLCAST (DES.COLUMN_VALUEASVARCHAR2 (256) )
The Lady Vanishes

The Unbearable Lightness Of Being
Sisters

3 rows selected.

UPDATE purchaseorder p
SET p.OBJECT_VALUE =
updateXML (p.0OBJECT_VALUE,
' /PurchaseOrder/Lineltems/Lineltem/Description/text ()",
'The Wizard of 0z')
WHERE XMLExists('S$p/PurchaseOrder/Lineltems/LinelItem[Description="Sisters"]"'
PASSING OBJECT_VALUE AS "p")
AND XMLExists ('$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

1 row updated.

SELECT XMLCast (des.COLUMN_VALUE AS VARCHAR2 (256)
FROM purchaseorder,
XMLTable ('$p/PurchaseOrder/Lineltems/Lineltem/Description’
PASSING OBJECT_VALUE AS "p") des
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"

3-54 Oracle XML DB Developer's Guide



Updating XML Content Stored in Oracle XML DB

PASSING OBJECT _VALUE AS "p");

XMLCAST (DES . COLUMN_VALUEASVARCHAR2 (256) )

The Wizard of Oz
The Wizard of Oz
The Wizard of Oz

3 rows selected.

In Example 3-38, instead of updating only the intended node, SQL function
updateXML updates the values of all text nodes that belong to the Description
element. This is the correct updateXML behavior, but it is not what was intended.

A WHERE clause can be used only to identify which documents must be updated, not which
nodes within a document must be updated.

After the document has been selected, the XPath expression passed to updateXML
determines which nodes within the document must be updated. In this case, the XPath
expression identifies all three Description nodes, so all three of the associated text
nodes were updated.

To correctly use SQL function updateXML to update a node that occurs multiple times
within a collection, use the XPath expression passed to updateXML to identify which
nodes in the XML document to update. By introducing the appropriate predicate into
the XPath expression, you can limit which nodes in the document are updated.
Example 3-39 illustrates the correct way to update one node within a collection.

Example 3-39 Correctly Updating a Node That Occurs Multiple Times in a Collection

SELECT XMLCast (des.COLUMN_VALUE AS VARCHAR2 (256)
FROM purchaseorder,
XMLTable ('$p/PurchaseOrder/Lineltems/Lineltem/Description'
PASSING OBJECT VALUE AS "p") des
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

XMLCAST (DES . COLUMN_VALUEASVARCHAR2 (256) )

A Night to Remember
The Unbearable Lightness Of Being
Sisters

3 rows selected.

UPDATE purchaseorder p
SET p.OBJECT_VALUE =
updateXML (

p.OBJECT_VALUE,
' /PurchaseOrder/Lineltems/Lineltem/Description[text ()="Sisters"]/text ()",
'The Wizard of 0z')

WHERE XMLExists('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"

PASSING OBJECT _VALUE AS "p");

1 row updated.
SELECT XMLCast (des.COLUMN_VALUE AS VARCHAR2 (256))
FROM purchaseorder,

XMLTable ('S$p/PurchaseOrder/Lineltems/Lineltem/Description’
PASSING OBJECT_VALUE AS "p") des

Using Oracle XML DB  3-55



Updating XML Content Stored in Oracle XML DB

WHERE XMLExists ('S$Sp/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

XMLCAST (DES . COLUMN_VALUEASVARCHAR2 (256) )
A Night to Remember

The Unbearable Lightness Of Being

The Wizard of Oz

3 rows selected.

SQL function updateXML lets multiple changes be made to the document in one
statement. Example 3-40 shows how to change the values of text nodes belonging to
the User and SpecialInstructions elements in one statement.

Example 3-40 Changing Text Node Values using UPDATEXML

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/CostCenter'
PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2(4)) "Cost Center",
XMLCast (XMLQuery (' $p/PurchaseOrder/SpecialInstructions’
PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (2048)) "Instructions"
FROM purchaseorder
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

Cost Center Instructions

S30 Alr Mail
1 row selected.

The following single UPDATE SQL statement changes the User and
SpecialInstructions element text node values:

UPDATE purchaseorder
SET OBJECT_VALUE =
updateXML (OBJECT_VALUE,

' /PurchaseOrder/CostCenter/text () ',
'B40"',
' /PurchaseOrder/SpecialInstructions/text() ',
'Priority Overnight Service')

WHERE XMLExists('$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

1 row updated.

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/CostCenter'
PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (4)) "Cost Center",
XMLCast (XMLQuery (' $p/PurchaseOrder/SpecialInstructions’
PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (2048)) "Instructions"
FROM purchaseorder
WHERE XMLExists('$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

Cost Center Instructions

3-56 Oracle XML DB Developer's Guide



Namespace Support in Oracle XML DB

B40 Priority Overnight Service

1 row selected.

Updating XML Schema-Based and Non-Schema-Based XML Documents

The way SQL functions such as updateXxML modify an XML document depends on
how the XML document is stored and whether it is based on an XML schema:

s XML documents stored in CLOB values — When a SQL function such as
updateXML modifies an XML document stored as a CLOB (whether or not it is
XML schema-based), Oracle XML DB performs the update by creating a
Document Object Model (DOM) from the document and using DOM API methods
to modify the appropriate XML data. After modification, the updated DOM is
returned back to the underlying CLOB value.

= XML documents stored object-relationally — When a SQL function such as
updateXML modifies an XML schema-based document that is stored
object-relationally, Oracle XML DB can use XPath rewrite to modify the
underlying objects in place. This is a partial update, which translates the XPath
argument to the SQL function into an equivalent SQL operation. The SQL
operation then directly modifies the attributes of underlying objects. Such a partial
update can be much quicker than a DOM-based update. This can improve
performance significantly when executing SQL code that applies a SQL function
such as updateXML to a large number of documents.

= XML documents stored as binary XML — When a SQL function such as
updateXML is used on a binary XML column, Oracle XML DB often need not
build a DOM. The exact portion of the document that must be updated is
calculated using query evaluation techniques such as streaming and XMLIndex.
The updated data is written to disk starting only where the first change
occurs—anything before that is unchanged. In addition, if SecureFile LOBs are
used for storing the data (the default behavior), then the change is applied in a
sliding manner, without causing the rest of the LOB to be rewritten. That is, with
SecureFile LOB storage of binary XML data, only the data that is actually changed
is updated. This can significantly improve performance relative to unstructured
storage. These optimizations apply to both non-schema-based and XML
schema-based data.

See Also: Chapter 8, "XPath Rewrite for Structured Storage"

Namespace Support in Oracle XML DB

Namespace support is a key feature of the W3C XML Recommendations. Oracle

XML DB fully supports the W3C Namespace Recommendation. All XMLType methods
and XML-specific SQL functions work with XPath expressions that include namespace
prefixes. All methods and functions accept an optional namespace argument that
provides the namespace declarations for correctly resolving namespace prefixes used
in XPath expressions.

The namespace parameter is required whenever the provided XPath expression
contains namespace prefixes. When parameter namespace is provided, it must
provide an explicit declaration for the default namespace in addition to the prefixed
namespaces, unless the default namespace is the noNamespace namespace. When
parameter namespace is not provided, Oracle XML DB makes the following
assumptions about the XPath expression:

Using Oracle XML DB  3-57



How Oracle XML DB Processes XMLType Methods and SQL Functions

»  If the content of the XML Type instance is not based on a registered XML schema,
then any term in the XPath expression that does include a namespace prefix is
assumed to be in the noNamespace namespace.

s If the content of the XML Type is based on a registered XML schema, then any term
in the XPath expression that does not include a namespace prefix is assumed to be
in the targetNamespace declared by the XML schema, if any. If the XML schema
does not declare a targetnamespace, then names noNamespace is used.

Failing to correctly define the namespaces required to resolve XPath expressions
results in XPath-based operations not working as expected. When the namespace
declarations are incorrect or missing, the result of the operation is normally null, rather
than an error. To avoid confusion, whenever any namespaces other than
noNamespace are present in either the XPath expression or the target XML document,
pass the complete set of namespace declarations, including the declaration for the default
namespace.

How Oracle XML DB Processes XMLType Methods and SQL Functions

Oracle XML DB processes SQL /XML access and query functions such as XMLQuery
and XMLType methods using DOM-based or SQL-based techniques:

s DOM-based XMLType processing — Oracle XML DB performs the required
processing by constructing a DOM from the contents of the XML Type object. It
uses methods provided by the DOM API to perform the required operation on the
DOM. If the operation involves updating the DOM tree, then the entire XML
document has to be written back to disk when the operation is completed. The
process of using DOM-based operations on XMLType data is referred to as
functional evaluation.

The advantage of functional evaluation is that it can be used regardless of the
storage model (structured, binary XML, or unstructured) used for the XMLType
instance. The disadvantage of functional evaluation is that it much more expensive
than XPath rewrite, and does not scale across large numbers of XML documents.

s SQL-based XMLType processing — Oracle XML DB constructs a SQL statement that
performs the processing required to complete the function or method. The SQL
statement works directly against the object-relational data structures that underlie
a schema-based XMLType. This process is referred to as XPath rewrite. See
Chapter 8, "XPath Rewrite for Structured Storage".

The advantage of XPath rewrite is that it lets Oracle XML DB evaluate
XPath-based SQL functions and methods at near relational speeds. This lets these
operations scale across large numbers of XML documents. The disadvantage of XPath
rewrite is that since it relies on direct access and updating the objects used to store
the XML document, it can be used only when the XMLType instance is stored
using XML schema-based object-relational storage techniques.

= Streaming evaluation of binary XML data — If you use binary XML as the XMLType
storage model, then XPath expressions used in SQL/XML access and query
functions such as XMLQuery are evaluated in a streaming fashion, without
recourse to building a DOM.

Generating XML Data from Relational Data

This section presents examples of using Oracle XML DB to generate XML data from
relational data.

3-58 Oracle XML DB Developer's Guide



Generating XML Data from Relational Data

See Also:
s Chapter 5, "Using XQuery with Oracle XML DB"
s Chapter 18, "Generating XML Data from the Database"

Generating XML Data from Relational Data using SQL/XML Functions

You can use standard SQL /XML functions to generate one or more XML documents.
SQL/XML function XMLQuery is the most general way to do this. Other SQL /XML
functions that you can use for this are the following:

s XMLElement creates a element

s XMLAttributes adds attributes to an element

s XMLForest creates forest of elements

= XMLAgg creates a single element from a collection of elements

The query in Example 3-41 uses these functions to generate an XML document that
contains information from the tables departments, locations, countries,
employees, and jobs.

Example 3-41 Generating XML Data using SQL/XML Functions

SELECT XMLElement (
"Department",
XMLAttributes (d.Department_id AS "DepartmentId"),
XMLForest (d.department_name AS "Name"),
XMLElement (
"Location",
XMLForest (street_address AS "Address",
city AS "City",
state_province AS "State",
postal_code AS "Zip",
country _name AS "Country")),
XMLElement (
"EmployeeList",
(SELECT XMLAgg (
XMLElement (
"Employee",
XMLAttributes (e.employee_id AS "employeeNumber"),
XMLForest (
e.first_name AS "FirstName",
.last_name AS "LastName",
.email AS "EmailAddress",
.phone_number AS "PHONE_NUMBER",
.hire_date AS "StartDate",
.job_title AS "JobTitle",
.salary AS "Salary",
m.first_name || ' ' || m.last_name AS "Manager"),
XMLElement ("Commission", e.commission_pct)))
FROM hr.employees e, hr.employees m, hr.jobs j
WHERE e.department_id = d.department_id
AND j.job_id = e.job_id
AND m.employee_id = e.manager_id)))

® Y- ® ® ® O

AS XML
FROM hr.departments d, hr.countries c, hr.locations 1
WHERE department_name = 'Executive'

AND d.location_id = 1l.location_id
AND 1l.country id = c.country_id;

Using Oracle XML DB 3-59



Generating XML Data from Relational Data

The query returns the following XML:

<Department DepartmentId="90"><Name>Executive</Name><Location><Address>2004
Charade Rd</Address><City>Seattle</City><State>Washingto
n</State><Zip>98199</Zip><Country>United States of
America</Country></Location><EmployeeList><Employee
employeeNumber="101"><FirstNa
me>Neena</FirstName><LastName>Kochhar</LastName><EmailAddress>NKOCHHAR</EmailAdd
ess><PHONE_NUMBER>515.123.4568</PHONE_NUMBER><Start
Date>2005-09-21</StartDate><JobTitle>Administration Vice
President</JobTitle><Salary>17000</Salary><Manager>Steven King</Manager><Com
mission></Commission></Employee><Employee
employeeNumber="102"><FirstName>Lex</FirstName><LastName>De
Haan</LastName><EmailAddress>L
DEHAAN</EmailAddress><PHONE_NUMBER>515.123.4569</PHONE
NUMBER><StartDate>2001-01-13</StartDate><JobTitle>Administration Vice Presiden
t</JobTitle><Salary>17000</Salary><Manager>Steven
King</Manager><Commission></Commission></Employee></Employeelist></Department>

This query generates element Department for each row in the departments table.

s Each Department element contains attribute DepartmentID. The value of
DepartmentID comes from the department_id column. The Department
element contains sub-elements Name, Location, and EmployeeList.

m The text node associated with the Name element comes from the name column in
the departments table.

s The Location element has child elements Address, City, State, Zip, and
Country. These elements are constructed by creating a forest of named elements
from columns in the locations and countries tables. The values in the
columns become the text node for the named element.

s The EmployeeList element contains an aggregation of Employee Elements. The
content of the EmployeeList element is created by a subquery that returns the
set of rows in the employees table that correspond to the current department.
Each Employee element contains information about the employee. The contents
of the elements and attributes for each Employee element is taken from tables
employees and jobs.

The output generated by SQL /XML functions is generally not pretty-printed. The only
exception is function XMLSerialize—use XMLSerialize to pretty-print. This lets
the other SQL /XML functions (1) avoid creating a full DOM when generating the
required output, and (2) reduce the size of the generated document. This lack of
pretty-printing by most SQL /XML functions does not matter to most applications.
However, it makes verifying the generated output manually more difficult.

Example 3-42 Creating XMLType Views Over Conventional Relational Tables

CREATE OR REPLACE VIEW department_xml OF XMLType
WITH OBJECT ID (substr(
XMLCast (
XMLQuery (' $p/Department /Name'
PASSING OBJECT VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2(30)),
1l
128))
AS

3-60 Oracle XML DB Developer's Guide



Generating XML Data from Relational Data

SELECT XMLElement (

"Department",

XMLAttributes (d.department_id AS "DepartmentId"),

XMLForest (d.department_name AS "Name"),

XMLElement ("Location", XMLForest (street_address AS "Address",
city AS "City",
state_province AS "State",
postal_code AS "Zip",
country_name AS "Country")),

XMLElement (

"EmployeeList",
(SELECT XMLAgg (
XMLElement (
"Employee",
XMLAttributes (e.employee_id AS "employeeNumber"),
XMLForest (e.first_name AS "FirstName",
e.last_name AS "LastName",
.email AS "EmailAddress",
.phone_number AS "PHONE_NUMBER",
.hire_date AS "StartDate",
.job_title AS "JobTitle",
.salary AS "Salary",
.first_name || ' ' ||
.last_name AS "Manager"),
XMLElement ("Commission", e.commission_pct)))
FROM hr.employees e, hr.employees m, hr.jobs j
WHERE e.department_id = d.department_id
AND j.job_id = e.job_id
AND m.employee_id = e.manager_id))).extract('/*")

—~ 38 3 0 Y- O ® O

AS XML
FROM hr.departments d, hr.countries c, hr.locations 1
WHERE d.location_id = 1l.location_id

AND 1l.country_id = c.country id;

View created.

The XMLType view lets relational data be persisted as XML content. Rows in XMLType
views can be persisted as documents in Oracle XML DB Repository. The contents of an
XMLType view can be queried, as shown in Example 3-43.

Example 3-43 shows a simple query against an XMLType view. The XPath expression
passed to SQL/XML function XMLEx1sts restricts the result set to the node that
contains the Executive department information. The result is shown pretty-printed
here for clarity.

Example 3-43 Querying XMLType Views

SELECT OBJECT_VALUE FROM department_xml
WHERE XMLExists('Sp/Department [Name="Executive"]' PASSING OBJECT_VALUE AS "p");

OBJECT_VALUE
<Department DepartmentId="90">
<Name>Executive</Name>
<Location>
<Address>2004 Charade Rd</Address>
<City>Seattle</City>
<State>Washington</State>
<Zip>98199</Zip>
<Country>United States of America</Country>

Using Oracle XML DB 3-61



Generating XML Data from Relational Data

</Location>
<EmployeeList>
<Employee employeeNumber="101">
<FirstName>Neena</FirstName>
<LastName>Kochhar</LastName>
<EmailAddress>NKOCHHAR</EmailAddress>
<PHONE_NUMBER>515.123.4568</PHONE_NUMBER>
<StartDate>2005-09-21</StartDate>
<JobTitle>Administration Vice President</JobTitle>
<Salary>17000</Salary>
<Manager>Steven King</Manager>
<Commission/>
</Employee>
<Employee employeeNumber="102">
<FirstName>Lex</FirstName>
<LastName>De Haan</LastName>
<EmailAddress>LDEHAAN</EmailAddress>
<PHONE_NUMBER>515.123.4569</PHONE_NUMBER>
<StartDate>2001-01-13</StartDate>
<JobTitle>Administration Vice President</JobTitle>
<Salary>17000</Salary>
<Manager>Steven King</Manager>
<Commission/>
</Employee>
</EmployeeList>
</Department>

1 row selected.

As can be seen from the following execution plan output, Oracle XML DB is able to
correctly rewrite the XPath-expression argument in the XMLEx1ists expression into a
SELECT statement on the underlying relational tables.

SELECT OBJECT_VALUE FROM department_xml
WHERE XMLExists ('S$p/Department [Name="Executive"]' PASSING OBJECT_ VALUE AS "p");

PLAN_TABLE_OUTPUT

Plan hash value: 2414180351

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | 1 80 | 3 (0)| 00:00:01
| 1| SORT AGGREGATE | | 1] 115 | | |
|* 2 | HASH JOIN \ | 10 | 1150 | 7 (15)] 00:00:01 |
[* 3| HASH JOIN | | 10 | 960 | 5 (20)] 00:00:01
| 4| TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 10 | 690 | 2 (0)| 00:00:01
[* 5 | INDEX RANGE SCAN | EMP_DEPARTMENT IX | 10 | | 1 (0)| 00:00:01
| 6] TABLE ACCESS FULL | JoBs | 19 | 513 | 2 (0)] 00:00:01
| 7| TABLE ACCESS FULL | EMPLOYEES | 107 | 2033 | 2 (0)| 00:00:01
| 8 | NESTED LOOPS \ | 1| 80 | 3 (0)] 00:00:01 |
| 9| NESTED LOOPS | | 1 68 | 3 (0)| 00:00:01
[* 10 | TABLE ACCESS FULL | DEPARTMENTS | 1 19 | 2 (0)| 00:00:01
| 11 | TABLE ACCESS BY INDEX ROWID | LOCATIONS | 1 49 | 1 (0)| 00:00:01
[* 12 | INDEX UNIQUE SCAN | LOC_ID_PK | 1 | 0 (0)] 00:00:01
|* 13 |  INDEX UNIQUE SCAN | COUNTRY_C_ID_PK | 1 12 | 0 (0)] 00:00:01

2 - access("M"."EMPLOYEE_ID"="E"."MANAGER_ID")

3-62 Oracle XML DB Developer's Guide



Generating XML Data from Relational Data

3 - access("J"
5 - access("E"
10 - filter("D"
12 - access("D"
13 - access("L'

"
"
]
"

30 rows selected.

"J".
. "DEPARTMENT_ID"=:Bl)

. "DEPARTMENT_NAME"='Executive')

. "LOCATION_ID"="L"."LOCATION_ID")
. "COUNTRY_ID"="C"."COUNTRY_ID")

"JOB_ID"="E"."JOB_ID")

Note: XPath rewrite on XML expressions that operate on XMLType
views is only supported when nodes referenced in the XPath
expression are not descendants of an element created using SQL
function XMLAgg.

Generating XML Data from Relational Data using DBURITYPE

You can also generate XML from relational data using SQL function DBURIType.
Function DBURIType exposes one or more rows in a given table or view as a single
XML document. The name of the root element is derived from the name of the table or
view. The root element contains a set of ROW elements. There is one ROW element for
each row in the table or view. The children of each ROW element are derived from the
columns in the table or view. Each child element contains a text node with the value of
the column for the given row.

Example 3-44 shows how to use SQL function DBURIType to access the contents of
table departments in database schema HR. It uses method getXML () to return the
resulting document as an XMLType instance.

Example 3-44 Generating XML Data from a Relational Table using DBURIType and
getXML()

SELECT DBURIType ('/HR/DEPARTMENTS').getXML() FROM DUAL;

DBURITYPE (' /HR/DEPARTMENTS') .GETXML ()

<?xml version="1.0"?>

<DEPARTMENTS>

<ROW>
<DEPARTMENT ID>10</DEPARTMENT ID>
<DEPARTMENT_NAME>Administration</DEPARTMENT NAME>
<MANAGER_ID>200</MANAGER_ID>
<LOCATION_ID>1700</LOCATION_ID>

</ROW>

<ROW>
<DEPARTMENT ID>20</DEPARTMENT ID>
<DEPARTMENT_NAME>Marketing</DEPARTMENT NAME>
<MANAGER_ID>201</MANAGER_ID>
<LOCATION_ID>1800</LOCATION_ID>

</ROW>

</DEPARTMENTS>

Example 3-45 shows how to use an XPath predicate to restrict the rows that are
included in an XML document generated using DBURIType. The XPath expression in
the example restricts the XML document to DEPARTMENT_ID columns with value 10.

Example 3-45 Restricting Rows using an XPath Predicate

SELECT DBURIType ('/HR/DEPARTMENTS/ROW[DEPARTMENT ID="10"]").getXML()
FROM DUAL;

Using Oracle XML DB  3-63



XSL Transformation and Oracle XML DB

DBURITYPE (' /HR/DEPARTMENTS/ROW [DEPARTMENT ID="10"]"') .GETXML ()

<?xml version="1.0"?>

<ROW>
<DEPARTMENT ID>10</DEPARTMENT ID>
<DEPARTMENT_NAME>Administration</DEPARTMENT NAME>
<MANAGER_ID>200</MANAGER_ID>
<LOCATION_ID>1700</LOCATION_ID>

</ROW>

1 row selected.

SQL function DBURIType provides a simple way to expose some or all rows in a
relational table as one or more XML documents. The URL passed to function
DBURIType can be extended to return a single column from the view or table, but in
that case the URL must also include predicates that identify a single row in the target
table or view.

Example 346 illustrates this. The predicate [DEPARTMENT_ID="10"] causes the
query to return the value of column department_name for the departments row
where column department_id has the value 10.

Example 3-46 Restricting Rows and Columns using an XPath Predicate

SELECT DBURIType (
' /HR/DEPARTMENTS/ROW [DEPARTMENT _ID="10"]/DEPARTMENT NAME') .getXML ()
FROM DUAL;

DBURITYPE (' /HR/DEPARTMENTS/ROW [DEPARTMENT ID="10"]/DEPARTMENT NAME') .GETXML ()

<?xml version="1.0"?>
<DEPARTMENT_NAME>Administration</DEPARTMENT NAME>

1 row selected.

SQL function DBURIType is less flexible than the SQL /XML functions:
» It provides no way to control the shape of the generated document.
= The data can come only from a single table or view.

s The generated document consists of one or more ROW elements. Each ROW element
contains a child for each column in the target table.

s The names of the child elements are derived from the column names.

To control the names of the XML elements, to include columns from more than one
table, or to control which columns from a table appear in the generated document,
create a relational view that exposes the desired set of columns as a single row, and
then use function DBURIType to generate an XML document from the contents of that
View.

XSL Transformation and Oracle XML DB

The W3C XSLT Recommendation defines an XML language for specifying how to
transform XML documents from one form to another. Transformation can include
mapping from one XML schema to another or mapping from XML to some other
format such as HITML or WML.

3-64 Oracle XML DB Developer's Guide



XSL Transformation and Oracle XML DB

See Also: http://www.w3.org/XML/Schema for information
about the XSLT standard

XSL transformation is typically expensive in terms of the amount of memory and
processing required. Both the source document and the style sheet must be parsed and
loaded into memory structures that allow random access to different parts of the
documents. Most XSL processors use DOM to provide the dynamic memory
representation of both documents. The XSL processor then applies the style sheet to
the source document, generating a third document.

Oracle XML DB includes an XSLT processor that lets XSL transformations be
performed inside the database. In this way, Oracle XML DB can provide XML-specific
memory optimizations that significantly reduce the memory required to perform the
transformation. It can also eliminate overhead associated with parsing the documents.
These optimizations are only available when the source for the transformation is a
schema-based XML document, however.

Oracle XML provides three ways to invoke the XSL processor:
s SQL function XMLtransform

»  XMLType method transform()

s PL/SQL package DBMS_XSLPROCESSOR

Each of these XML transformation methods takes as input a source XML document
and an XSL style sheet in the form of XMLType instances. For SQL function
XMLtransformand XMLType method transform (), the result of the transformation
can be an XML document or a non-XML document, such as HTML. However, for
PL/SQL package DBMS_XSLPROCESSOR, the result of the transformation is expected
to be a valid XML document. Any HTML generated by a transformation using
package DBMS_XSLPROCESSOR is XHTML, which is both valid XML and valid HTML.

Example 3-47 shows part of an XSLT style sheet, PurchaseOrder .xs1. The complete
style sheet is given in "XSL Style Sheet Example, PurchaseOrder.xsl" on page A-38.

Example 3-47 XSLT Style Sheet Example: PurchaseOrder.xsl

<?xml version="1.0" encoding="WINDOWS-1252"7?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xdb="http://xmlns.oracle.com/xdb"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<xsl:template match="/">
<html>
<head/>
<body bgcolor="#003333" text="#FFFFCC" link="#FFCC00" vlink="#66CC99" alink="#669999">
<FONT FACE="Arial, Helvetica, sans-serif">
<xsl:for-each select="PurchaseOrder"/>
<xsl:for-each select="PurchaseOrder">
<center>
<span style="font-family:Arial; font-weight:bold">
<FONT COLOR="#FF0000">
<B>PurchaseOrder </B>
</FONT>
</span>
</center>
<br/>
<center>
<xsl:for-each select="Reference">
<span style="font-family:Arial; font-weight:bold">
<xsl:apply-templates/>
</span>

Using Oracle XML DB  3-65



XSL Transformation and Oracle XML DB

</xsl:for-each>
</center>
</xsl:for-each>
<P>
<xsl:for-each select="PurchaseOrder">
<br/>
</xsl:for-each>
<P/>
<p>
<xsl:for-each select="PurchaseOrder">
<br/>
</xsl:for-each>
</P>
</P>
<xsl:for-each select="PurchaseOrder"/>
<xsl:for-each select="PurchaseOrder">
<table border="0" width="100%" BGCOLOR="#000000">
<tbody>
<tr>
<td WIDTH="296">
<p>
<B>
<FONT SIZE="+1" COLOR="#FF0000" FACE="Arial, Helvetica, sans-serif">Internal</FONT>
</B>
</P>

</td>
<td width="93"/>
<td valign="top" WIDTH="340">
<B>
<FONT COLOR="#FF0000">
<FONT SIZE="+1">Ship To</FONT>
</FONT>
</B>
<xsl:for-each select="ShippingInstructions">
<xsl:if test="position()=1"/>
</xsl:for-each>
<xsl:for-each select="ShippingInstructions">
</xsl:for-each>

These is nothing Oracle XML DB-specific about the style sheet of Example 3—47. A
style sheet can be stored in an XMLType table or column or stored as
non-schema-based XML data inside Oracle XML DB Repository.

Performing transformations inside the database lets Oracle XML DB optimize features
such as memory usage, I/O operations, and network traffic. These optimizations are
particularly effective when the transformation operates on a small subset of the nodes
in the source document.

In traditional XSL processors, the entire source document must be parsed and loaded
into memory before XSL processing can begin. This process requires significant
amounts of memory and processor. When only a small part of the document is
processed this is inefficient.

When Oracle XML DB performs XSL transformations on a schema-based XML
document there is no need to parse the document before processing can begin. The
lazily loaded virtual DOM eliminates the need to parse the document, by loading
content directly from disk as the nodes are accessed. The lazy load also reduces the
amount of memory required to perform the transformation, because only the parts of
the document that are processed are loaded into memory.

3-66 Oracle XML DB Developer's Guide



XSL Transformation and Oracle XML DB

Example 348 shows how to use SQL function XMLtransform to apply an XSL style
sheet to a document stored in an XMLType table, producing HTML code. SQL function
XDBURIType reads the XSL style sheet from Oracle XML DB Repository.

In the interest of brevity, only part of the result of the transformation is shown in
Example 3-48. Omitted parts are indicated with an ellipsis (. . .). Figure 3-7 shows
what the transformed result looks like in a Web browser.

Example 3-48 Applying a Style Sheet using TRANSFORM

SELECT
XMLtransform (
OBJECT_VALUE,
XDBURIType (' /source/schemas/poSource/xsl/purchaseOrder.xsl').getXML())
FROM purchaseorder
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

XMLTRANSFORM (OBJECT_VALUE, XDBURITYPE ('/SOURCE/SCHEMAS/POSOURCE/XSL/PURCHASEORDER.XSL"') .GET
<html xmlns:xdb="http://xmlns.oracle.com/xdb"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<head/>
<body bgcolor="#003333" text="#FFFFCC" link="#FFCC00" v1link="#66CC99" alink="#669999">
<FONT FACE="Arial, Helvetica, sans-serif">
<center>
<span style="font-family:Arial; font-weight:bold">
<FONT COLOR="#FF0000">
<B>PurchaseOrder </B>
</FONT>
</span>
</center>
<br/>
<center>
<span style="font-family:Arial; font-weight:bold">SBELL-2002100912333601PDT</span>
</center>
<p>
<br/>
<P/>
<p>
<br/>
</P>
</P>
<table border="0" width="100%" BGCOLOR="#000000">
<tbody>
<tr>
<td WIDTH="296">
<P>
<B>
<FONT SIZE="+1" COLOR="#FF0000" FACE="Arial, Helvetica,
sans-serif">Internal</FONT>
</B>
</P>
<table border="0" width="98%" BGCOLOR="#000099">
</table>
</td>
<td width="93">
</td>
<td valign="top" WIDTH="340">
<B>
<FONT COLOR="#FF0000">
<FONT SIZE="+1">Ship To</FONT>
</FONT>
</B>

Using Oracle XML DB  3-67



Using Oracle XML DB Repository

<table border="0" BGCOLOR="#999900">
</table>
</td>
</tr>
</tbody>
</table>
<br/>
<B>
<FONT COLOR="#FF0000" SIZE="+1">Items:</FONT>
</B>
<br/>
<br/>
<table border="0">

</table>
</FONT>

</body>
</html>

1 row selected.

See Also: Chapter 11, "Transforming and Validating XMLType
Data"

Using Oracle XML DB Repository

Oracle XML DB Repository makes it possible to organize XML content using a
file/folder metaphor. This lets you use a URL to uniquely identify XML documents
stored in the database. This approach appeals to XML developers used to using
constructs such as URLs and XPath expressions to identify content.

Oracle XML DB Repository is modelled on the DAV standard. The DAV standard uses
the term resource to describe any file or folder managed by a WebDAV server. A
resource consists of a combination of metadata and content. The DAV specification
defines the set of (system-defined) metadata properties that a WebDAYV server is
expected to maintain for each resource and the set of XML documents that a DAV
server and DAV-enabled client uses to exchange metadata.

Although Oracle XML DB Repository can manage any kind of content, it provides
specialized capabilities and optimizations related to managing resources where the
content is XML.

Installing and Uninstalling Oracle XML DB Repository

All of the metadata and content managed by Oracle XML DB Repository is stored
using a set of tables in the database schema owned by database schema (user account)
XDB. User XDB is a locked account that is installed using DBCA or by running script
catam. sqgl. Script catam. sql is located in the directory ORACLE_

HOME/rdbms /admin. The repository can be uninstalled using DBCA or by running
the script catnogm. sgl. Take great care when running catnoam. sql as it drops all
content stored in Oracle XML DB Repository and invalidates any XMLType tables or
columns associated with registered XML schemas.

See Also: Oracle Database 2 Day + Security Guide for information
about database schema XDB

3-68 Oracle XML DB Developer's Guide



Using Oracle XML DB Repository

Oracle XML DB Provides Name-Level Locking

When using a relational database to maintain hierarchical folder structures, ensuring a
high degree of concurrency when adding and removing items in a folder is a
challenge. In conventional file system there is no concept of a transaction. Each
operation (add a file, create a subfolder, rename a file, delete a file, and so on) is treated
as an atomic transaction. Once the operation has completed the change is immediately
available to all other users of the file system.

Note: As a consequence of transactional semantics enforced by the
database, folders created using SQL statements are nof visible to
other database users until the transaction is committed. Concurrent
access to Oracle XML DB Repository is controlled by the same
mechanism used to control concurrency in Oracle Database. The
integration of the repository with Oracle Database provides strong
management options for XML content.

One key advantage of Oracle XML DB Repository is the ability to use SQL for
repository operations in the context of a logical transaction. Applications can create
long-running transactions that include updates to one or more folders. In this
situation, a conventional locking strategy that takes an exclusive lock on each updated
folder or directory tree would quickly result in significant concurrency problems.

Oracle XML DB solves this by providing for name-level locking rather than
folder-level locking. Repository operations such as creating, renaming, moving, or
deleting a sub-folder or file do not require that your operation be granted an exclusive
write lock on the target folder. The repository manages concurrent folder operations
by locking the name within the folder rather than the folder itself. The name and the
modification type are put on a queue.

Only when the transaction is committed is the folder locked and its contents modified.
Hence Oracle XML DB lets multiple applications perform concurrent updates on the
contents of a folder. The queue is also used to manage folder concurrency by
preventing two applications from creating objects with the same name.

Queuing folder modifications until commit time also minimizes I/O when a number
of changes are made to a single folder in the same transaction.

This is useful when several applications generate files quickly in the same directory,
for example when generating trace or log files, or when maintaining a spool directory
for printing or e-mail delivery.

Use Protocols or SQL to Access and Process Repository Content

You can work with content stored in Oracle XML DB Repository in these ways:

s Using industry standard protocols such as HTTP(S), WebDAYV, and FTP to perform
document-level operations such as insert, update, and delete.

= By directly accessing Oracle XML DB Repository content at the table or row level,
using SQL.

= Using Oracle XML DB Content Connector—see Chapter 31, "Using Oracle XML
DB Content Connector”.

Using Oracle XML DB  3-69



Using Oracle XML DB Repository

Storing and Retrieving Database Content using Standard Protocols

Oracle XML DB supports industry-standard internet protocols such as HTTP(S),
WebDav, and FTP. The combination of protocol support and URL-based access makes
it possible to insert, retrieve, update, and delete content stored in Oracle Database
from standard desktop applications such as Windows Explorer, Microsoft Word, and
XMLSpy.

Figure 3-4 shows Windows Explorer used to insert a folder from the local hard drive
into Oracle Database. Windows Explorer includes support for the WebDAV protocol.
WebDAV extends the HTTP standard, adding additional verbs that allow an HTTP
server to act as a file server.

When a Windows Explorer copy operation or FTP input command is used to transfer a
number of documents into Oracle XML DB Repository, each put or post command is
treated as a separate atomic operation. This ensures that the client does not get
confused if one of the file transfers fails. It also means that changes made to a
document through a protocol are visible to other users as soon as the request has been
processed.

Figure 3—-4 Copying Files into Oracle XML DB Repository

& C:\oracleldemo\10.1.0.0.0\basicDemo\LOCAL\sampleData =3

© File Edit  View Favorites  Tools  Help ;II'

@Back @ @ @ 1’3 pSearch = Falders v

| Address |l’f) Ciloracleldemal 10.1.0.0.0\basicDemalLOC AL sampleData V| G0

File and Folder Tasks =1 2m2 =1 >m3

1 1
Other Places .

~ Irivalid @ PurchaseOrders on localhost
3 LocAL 1

D My Docurnents -
My Computer
8 My Metwork Places

Copying file

Details G &

sampleData ] gy
File Folder Copying SBELL-200305091 23336362P0 T xmil to hitp: /flacalhast: 8080 har

Date Modified: Yesterday,

MNovember 21, 2003, 4:42 PM (TT1TTTT1111111]

Uploading Content to Oracle XML DB using FTP

Example 3-49 shows commands issued and output generated when a standard
command line FTP tool loads documents into Oracle XML DB Repository:

Example 3-49 Uploading Content to the Repository using FTP

$ ftp mdrake-sun 2100

Connected to mdrake-sun.

220 mdrake-sun FTP Server (Oracle XML DB/Oracle Database 10g Enterprise Edition
Release 10.1.0.1.0 - Beta) ready.

Name (mdrake-sun:oraclel0): QUINE

331 Password required for QUINE

Password: password

230 QUINE logged in

3-70 Oracle XML DB Developer's Guide



Using Oracle XML DB Repository

ftp> cd /source/schemas

250 CWD Command successful

ftp> mkdir PurchaseOrders

257 MKD Command successful

ftp> cd PurchaseOrders

250 CWD Command successful

ftp> mkdir 2002

257 MKD Command successful

ftp> cd 2002

250 CWD Command successful

ftp> mkdir "Apr"

257 MKD Command successful

ftp> put "Apr/AMCEWEN-20021009123336171PDT.xml"
"Apr/AMCEWEN-20021009123336171PDT.xml"

200 PORT Command successful

150 ASCII Data Connection

226 ASCII Transfer Complete

local: Apr/AMCEWEN-20021009123336171PDT.xml remote:
Apr/AMCEWEN-20021009123336171PDT.xml

4718 bytes sent in 0.0017 seconds (2683.41 Kbytes/s)

ftp> put "Apr/AMCEWEN-20021009123336271PDT.xml"
"Apr/AMCEWEN-20021009123336271PDT.xml"

200 PORT Command successful

150 ASCII Data Connection

226 ASCII Transfer Complete

local: Apr/AMCEWEN-20021009123336271PDT.xml remote:
Apr/AMCEWEN-20021009123336271PDT.xml

4800 bytes sent in 0.0014 seconds (3357.81 Kbytes/s)

ftp> cd "Apr"

250 CWD Command successful

ftp> 1s -1

200 PORT Command successful

150 ASCII Data Connection

-rw-r--rl QUINE oracle 0 JUN 24 15:41 AMCEWEN-20021009123336171PDT.xml
JUN 24 15:41 AMCEWEN-20021009123336271PDT.xml
JUN 24 15:41 EABEL-20021009123336251PDT.xml
JUN 24 15:41 PTUCKER-20021009123336191PDT.xml
JUN 24 15:41 PTUCKER-20021009123336291PDT.xml
JUN 24 15:41 SBELL-20021009123336231PDT.xml
JUN 24 15:41 SBELL-20021009123336331PDT.xml
JUN 24 15:41 SKING-20021009123336321PDT.xml
-rw-r--rl QUINE oracle 0 JUN 24 15:41 SMCCAIN-20021009123336151PDT.xml
-rw-r--rl QUINE oracle 0 JUN 24 15:41 SMCCAIN-20021009123336341PDT.xml
-rw-r--rl QUINE oracle 0 JUN 24 15:41 VJONES-20021009123336301PDT.xml
226 ASCII Transfer Complete

remote: -1

959 bytes received in 0.0027 seconds (349.45 Kbytes/s)

ftp> cd ".."

250 CWD Command successful

-rw-r--r1l QUINE oracle
-rw-r--rl QUINE oracle
-rw-r--r1l QUINE oracle
-rw-r--r1l QUINE oracle
-rw-r--r1l QUINE oracle
-rw-r--rl QUINE oracle
-rw-r--rl QUINE oracle

O O O O O O O O O

ftp> quit
221 QUIT Goodbye.
$

The key point demonstrated by Figure 3—4 and Example 3-49 is that neither Windows
Explorer nor an FTP tool is aware that it is working with Oracle XML DB. Since the
tools and Oracle XML DB both support open Internet protocols they work with each
other out of the box.

Using Oracle XML DB 3-71



Using Oracle XML DB Repository

Any tool that understands the WebDAV or FIP protocol can be used to create content
managed by Oracle XML DB Repository. No additional software has to installed on the
client or the mid-tier.

When the contents of the folders are viewed using a tool such as Windows Explorer or
FTP, the length of any schema-based XML documents contained in the folder is shown
as zero (0) bytes. This was designed as such for two reasons:

= Itis not clear what the size of the document should be. Is it the size of the CLOB
instance generated by printing the document, or the number of bytes required to
store the objects used to persist the document inside the database?

= Regardless of which definition is chosen, calculating and maintaining this
information is costly.

Figure 3-5 shows Internet Explorer using a URL and the HTTP protocol to view an
XML document stored in the database.

Figure 3-5 Path-Based Access using HTTP and a URL

2 http:fflocalhost: B0B0fhome/SCOTT/poSource/xslfpurchaseOrder.xsl - Microsoft Internet ... E|@|E|

¢ File Edit View Favortes Tools Help ,',"

2 » — n >
‘ - h ) = i i ;] o -

e Eiack 2} \ﬂ |§| (0 | Search ;:/_\f:) Favorites @ Media 6:‘; Eg 1=

: Address |£j http: fflocalhost: 8080 /homefSCOTT posource)xslfpurchaseOrder . xsl V| Go

: Links éj Aria ﬁj Customize Links éj Free Hotmail éj My Oracle ﬁj etwork Request éj Oracle CRM >

<7rml version="1.0" encoding="UTF-8" 7=
- zuslstylesheet version="1.0"
wmins: wsl="http:/ /www.w3.org/1999/X5L/Transform"
umlns:xdb="http:/ fxmins.oracle.com/xdb"
smins:xsi="http:/ fvww.w3.org/ 2001 /XMLSchema-instance">
- «usltemplate match="/">
- <html=
<head /=
- <hody bgcoolor="#003333" text="#FFFFCC" link="#FFCCO0"
vlink="#66CC99" alink="#669999">
- <FOMT FACE="Arial, Helvetica, sans-serif'>
<usl:for-each select="PurchaseOrder" /=
- «<usl:for-each select="PurchaseOrder">
- «<center>
- <span style="font-family:Arial; font-weight:bold">
- <FONT COLOR="#FFO00D">
<B=Purchase Order</B>

<AFONT =
</spanz
</centers
b i *
b4 ¥
éj % Local intranet

Accessing Oracle XML DB Repository Programmatically

Oracle XML DB Repository can be accessed and updated directly from SQL. Thus, any
application or programming language that can use SQL to interact with Oracle
Database can also access and update content stored in the repository. Oracle XML DB
includes PL/SQL package DBMS_XDB, which provides methods that allow resources to
be created, modified, and deleted programmatically.

Example 3-50 shows how to create a simple text document resource using PL/SQL
function DBMS_XDB.createResource.

Example 3-50 Creating a Text Document Resource using CREATERESOURCE
DECLARE

3-72 Oracle XML DB Developer's Guide



Using Oracle XML DB Repository

res BOOLEAN;
BEGIN
res := DBMS_XDB.createResource('/home/QUINE/NurseryRhyme.txt',
bfilename ('XMLDIR', 'tdadxdb-03-01.txt'),
nls_charset_id('AL32UTF8'));
END;

Accessing and Updating XML Content in the Repository

This section describes features for accessing and updating Oracle XML DB Repository
content.

Accessing XML Documents using SQL

Content stored in the repository can be accessed and updated from SQL and PL/SQL.

You can interrogate the structure of the repository in complex ways. For example, you

can query to determine how many files with extension .xs1 are under a location other
than /home/mystylesheetdir.

You can also mix path-based repository access with content-based access. You can, for
example, ask "How many documents not under /home/purchaseOrders have a
node identified by the XPath /PurchaseOrder/User/text () with a value of
KING?"

All of the metadata for managing the repository is stored in a database schema owned
by database schema (user account) XDB. User XDB is created during Oracle XML DB
installation. The primary table in this schema is an XMLType table called
XDB$RESOURCE. This contains one row for each resource (file or folder) in the
repository. Documents in this table are referred to as resource documents. The XML
schema that defines the structure of an Oracle XML DB resource document is
registered under URL, "http://xmlns.oracle.com/xdb/XDBResource.xsd.

See Also: Oracle Database 2 Day + Security Guide for information
about database schema XDB

Repository Content is Exposed Through RESOURCE_VIEW and PATH_VIEW

Table XDBSRESOURCE is not directly exposed to SQL programmers. Instead, the
contents of the repository are exposed through two public views, RESOURCE_VIEW
and PATH_VIEW. Through these views, you can access and update both the metadata
and the content of documents stored in the repository.

Both views contain a virtual column, RES. Use RES to access and update resource
documents with SQL statements using a path notation. Operations on the views use
underlying tables in the repository.

Use EXISTS_PATH and UNDER_PATH for Path-Based Predicates in a WHERE
Clause

Oracle XML DB includes two repository-specific SQL functions: exists_path and
under_path. Use these functions to include path-based predicates in the WHERE
clause of a SQL statement. SQL operations can select repository content based on the
location of the content in the repository folder hierarchy. The hierarchical repository
index ensures that path-based queries are executed efficiently.

When XML schema-based XML documents are stored in the repository, the document
content is stored as an object in the default table identified by the XML schema. The

Using Oracle XML DB 3-73



Using Oracle XML DB Repository

repository contains only metadata about the document and a pointer (REF of XMLType)
that identifies the row in the default table that contains the content.

You Can Also Store Non-XML Documents in the Repository

It is also possible to store other kinds of documents in the repository. When a
document that is not XML or is not schema-based XML is stored in the repository, the
document content is stored in a LOB along with the metadata about the document.

PL/SQL Packages to Create, Delete, Rename, Move,... Folders and Documents

Because you can access and update Oracle XML DB Repository using SQL, any
application capable of calling a PL/SQL procedure can use the repository. All SQL and
PL/SQL repository operations are transactional. Access to the repository and its
contents is subject to both standard database security controls and repository access
control lists (ACLs).

With supplied PL/SQL packages DBMS_XDB, DBMS_XDBZ, and DBMS_XDB_VERSION,
you can create, delete, and rename documents and folders, move a file or folder within
the folder hierarchy, set and change the access permissions on a file or folder, and
initiate and manage versioning.

Example 3-51 uses PL/SQL package DBMS_XDB to create a set of subfolders beneath
folder /public.

Example 3-51 Creating Folders using PL/SQL Package DBMS_XDB

DECLARE

RESULT BOOLEAN;

BEGIN

IF (NOT DBMS_XDB.existsResource('/public/mysource')) THEN

result :=
END IF;

DBMS_XDB.createFolder ('/public/mysource');

IF (NOT DBMS_XDB.existsResource('/public/mysource/schemas')) THEN

result :=
END IF;

DBMS_XDB.createFolder (' /public/mysource/schemas');

IF (NOT DBMS_XDB.existsResource('/public/mysource/schemas/poSource')) THEN

result :=
END IF;

DBMS_XDB.createFolder ('/public/mysource/schemas/poSource') ;

IF (NOT DBMS_XDB.existsResource('/public/mysource/schemas/poSource/xsd')) THEN

result :=
END IF;

DBMS_XDB.createFolder (' /public/mysource/schemas/poSource/xsd') ;

IF (NOT DBMS_XDB.existsResource('/public/mysource/schemas/poSource/xsl')) THEN

result :=
END IF;
END;
/

DBMS_XDB.createFolder ('/public/mysource/schemas/poSource/xsl');

Accessing the Content of Documents using SQL

You can access the content of documents stored in Oracle XML DB Repository in
several ways. The easiest way is to use XDBURIType. XDBURIType uses a URL to
specify which resource to access. The URL passed to the XDBURIType is assumed to
start at the root of the repository. Data type XDBURIType provides methods
getBLOB (), getCLOB (), and getXML () to access the different kinds of content that
can be associated with a resource.

Example 3-52 shows how to use XDBURIType to access the content of the text
document:

3-74 Oracle XML DB Developer's Guide



Using Oracle XML DB Repository

Example 3-52 Accessing a Text Document in the Repository using XDBURITYPE
SELECT XDBURIType ('/home/QUINE/NurseryRhyme.txt').getCLOB() FROM DUAL;

XDBURITYPE (' /HOME/QUINE/NURSERYRHYME.TXT') .GETCLOB ()

Mary had a little lamb

Its fleece was white as snow
and everywhere that Mary went
that lamb was sure to go

1 row selected.

The contents of a document can also be accessed using the resource document.
Example 3-53 shows how to access the content of a text document:

Example 3-53 Accessing Resource Content using RESOURCE_VIEW

SELECT CONTENT
FROM RESOURCE_VIEW,
XMLTable (XMLNAMESPACES (default 'http://xmlns.oracle.com/xdb/XDBResource.xsd'),
' /Resource/Contents' PASSING RES
COLUMNS content CLOB PATH 'text')
WHERE equals_path(RES, '/home/QUINE/NurseryRhyme.txt') = 1;

CONTENT

Mary had a little lamb

Its fleece was white as snow
and everywhere that Mary went
that lamb was sure to go

1 row selected.

The content of non-schema-based and schema-based XML documents can also be
accessed through a resource. Example 3-54 shows how to use an XPath expression that
includes nodes from a resource document and nodes from an XML document to access
the contents of a PurchaseOrder document using the resource.

Example 3-54 Accessing XML Documents using Resource and Namespace Prefixes

SELECT des.description
FROM RESOURCE_VIEW rv,
XMLTable (XMLNAMESPACES ('http://xmlns.oracle.com/xdb/XDBResource.xsd' AS "r"),

'/r:Resource/r:Contents/PurchaseOrder/LineItems/Lineltem'
PASSING rv.RES
COLUMNS description VARCHAR2 (256) PATH 'Description') des

WHERE

equals_path(rv.RES, '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml1") = 1;

DES.DESCRIPTION

A Night to Remember
The Unbearable Lightness Of Being
The Wizard of Oz

3 rows selected.

In Example 3-54, the namespace prefix, r identifies which nodes in the XPath
expression are members of the resource namespace. Namespace prefix r is defined

Using Oracle XML DB 3-75



Using Oracle XML DB Repository

using the XMLNAMESPACES clause of SQL/XML function XMLTable. The namespace
declaration is needed here because the purchase-order XML schema does not define a
namespace, and it is not possible to apply a namespace prefix to nodes in the
PurchaseOrder document.

See Also: Chapter 5, "Using XQuery with Oracle XML DB" for more
information about the XMLNAMESPACES clause of XMLTable

Accessing the Content of XML Schema-Based Documents

The content of a schema-based XML document can be accessed in two ways.

s In the same manner as for non-schema-based XML documents, by using the
resource document. This lets RESOURCE_VIEW be used to query different types of
schema-based XML documents with a single SQL statement.

s Asarow in the default table that was defined when the XML schema was
registered with Oracle XML DB.

Accessing Resource Content using Element XMLRef in Joins

The XMLRef element in the resource document provides the join key required when a
SQL statement needs to access or update metadata and content as part of a single
operation.

The following queries use joins based on the value of element XMLRef to access
resource content.

Example 3-55 locates a row in the defaultTable based on a path in Oracle XML DB
Repository. SQL function ref locates the target row in the default table, based on the
value of the XMLRe f element in the resource document, RES.

Example 3-55 Querying Repository Resource Data using SQL Function REF and Element XMLRef

SELECT des.description
FROM RESOURCE_VIEW rv,
purchaseorder p,
XMLTable ('$p/PurchaseOrder/Lineltems/Lineltem' PASSING p.OBJECT_VALUE AS "p"
COLUMNS description VARCHAR2 (256) PATH 'Description') des
WHERE equals_path(rv.RES, '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml")
=1
AND ref (p) = XMLCast (XMLQuery ('declare default element namespace
"http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
fn:data(/Resource/XMLRef) ' PASSING rv.RES RETURNING CONTENT)
AS REF XMLType) ;

DES.DESCRIPTION

A Night to Remember
The Unbearable Lightness Of Being
The Wizard of Oz

3 rows selected.

Example 3-56 shows how to select fragments from XML documents based on
metadata, path, and content. The query returns the value of element Reference for
documents under /home/QUINE/PurchaseOrders/2002/Mar that contain orders
for part number 715515009058.

3-76 Oracle XML DB Developer's Guide



Using Oracle XML DB Repository

Example 3-56 Selecting XML Document Fragments Based on Metadata, Path, and
Content

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Reference’
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30))
FROM RESOURCE_VIEW rv, purchaseorder po
WHERE under_path(rv.RES, '/home/QUINE/PurchaseOrders/2002/Mar') = 1
AND ref (po) = XMLCast (

XMLQuery ('declare default element namespace
"http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
fn:data(/Resource/XMLRef) '

PASSING rv.RES RETURNING CONTENT)
AS REF XMLType)
AND XMLExists('S$Sp/PurchaseOrder/Lineltems/Lineltem/Part[@Id="715515009058"]"
PASSING po.OBJECT_VALUE AS "p");

XMLCAST (XMLQUERY ( ' SP/PURCHASEO

CJOHNSON-20021009123335851PDT
LSMITH-2002100912333661PDT
SBELL-2002100912333601PDT

3 rows selected.

In general, when accessing the content of schema-based XML documents, joining
RESOURCE_VIEW or PATH_VIEW with the default table is more efficient than using
RESOURCE_VIEW or PATH_VIEW on its own. An explicit join between the resource
document and the default table tells Oracle XML DB that the SQL statement works on
only one type of XML document. XPath rewrite can thus be used to optimize
operations on the default table and the resource.

Updating the Content of Documents Stored in the Repository

You can update the content of documents stored in Oracle XML DB Repository using
protocols or SQL.

Updating Repository Content using Protocols

The most popular content authoring tools support HTTP, FTP, and WebDAYV protocols.
These tools can use a URL and the HTTP verb get to access the content of a
document, and the HTTP verb put to save the contents of a document. Hence, given
the appropriate access permissions, a simple URL is all you need to access and edit
content stored in Oracle XML DB Repository.

Figure 3-6 shows how, with the WebDAV support included in Microsoft Word, you
can use Microsoft Word to update and edit a document stored in Oracle XML DB
Repository.

Using Oracle XML DB 3-77



Using Oracle XML DB Repository

Figure 3-6 Updating and Editing Content Stored in Oracle XML DB using Microsoft Word

i SBELL-2003030912333601PDT.xml - Microsoft Office Word 2003 Beta =10l x|

Type a question for help X

- @ E@&eadﬂ

File Edit Wiew Insert Format Tools Table window  Help

4

(] il g
Ed

S
" mg i Ll

DEH S I SRIVE|XB@BR I -
4_11 Mormal + Left: + TimesMewRoman - 12 - B J U %

g

I & % B3 | TmesMewRoman -~ 12 ~ A~| B 7 O
l-E-|---1---|---2---|---3---|---4---

(s Reference[SBELL-200303091233360 1 PD/T ] Reference )
(9 ser [ SV OLLMAN Juser )
saving
(4 Requestor [Sarah . Bell Requestor®) @
CHUNG Saving as:

‘http: fflocalhost: 8080/ home/SCOTTipurchaseOrders 2003 Mar /SBELL-20
(4 CostCenter [ S30) | CostCenter v | 0303091 2333601P0T. xml

4 ShippingInstructions [
(orame{Sarah T Belljname?)

_-a.-;aa

oo m o AL

(ttekephone (650 506 7400 Jtakephane”)
(4 Speciallnstructions [[ICITSREN

Al Carevinbinn | BT At fn T e ;e b e [Pz evinbioe (b

=[@E|= =& 4] | »]

Page SeC Ak Ln Col REC TRE EXT OWR Engish(u.s L

Speciallnstructions I*

Jelivery

«O»IL

N

When an editing application such as Microsoft Word updates an XML document that
is stored in Oracle XML DB, the database receives an input stream containing the new
content of the document. Unfortunately, applications such as Word do not provide
Oracle XML DB with any way of identifying which changes have taken place in the
document.Partial updates are thus impossible. It is necessary to parse the entire
document again, replacing all of the objects derived from the original document with
objects derived from the new content.

Updating Repository Content using SQL

SQL functions such as updateXML can be used to update the content of any document
stored in Oracle XML DB Repository. The content of the document can be modified by
updating the resource document or by updating the default table that holds the
content of the document.

Example 3-57 shows how to update the contents of a simple text document using a
SQL UPDATE statement and SQL function updateXML on the resource document. An
XPath expression is passed to updateXML as the target of the update operation,
identifying the text node belonging to element /Resource/Contents/text.

Example 3-57 Updating a Document using UPDATE and UPDATEXML on the Resource

DECLARE
file BFILE;
contents CLOB;

dest_offset NUMBER := 1;

3-78 Oracle XML DB Developer's Guide



Using Oracle XML DB Repository

src_offset  NUMBER :
lang_context NUMBER := 0;
conv_warning NUMBER := 0;
BEGIN
file := bfilename('XMLDIR', 'tdadxdb-03-02.txt");
DBMS_LOB.createTemporary (contents, true, DBMS_LOB.SESSION) ;
DBMS_LOB.fileopen(file, DBMS_LOB.file_readonly);
DBMS_LOB.loadClobfromFile (contents,
file,
DBMS_LOB.getLength(file),
dest_offset,
src_offset,
nls_charset_id('AL32UTF8'),
lang_context,
conv_warning) ;

1]
=

DBMS_ILOB.fileclose(file);
UPDATE RESOURCE_VIEW
SET res = updateXML (res,
' /Resource/Contents/text/text()"',

contents,
'xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd" ")
WHERE equals_path(res, '/home/QUINE/NurseryRhyme.txt') = 1;
DBMS_LOB. freeTemporary (contents) ;
END;
/

This technique for updating the content of a document by updating the associated
resource has the advantage that it can be used to update any kind of document stored
in Oracle XML DB Repository.

Example 3-58 shows how to update a node in an XML document by performing an
update on the resource document. Here, SQL function updateXML changes the value

of the text node associated with element User.

Example 3-58 Updating a Node using UPDATE and UPDATEXML

UPDATE RESOURCE_VIEW
SET res = updateXML(res,
'/r:Resource/r:Contents/PurchaseOrder/User/text () ',
'SKING',
'xmlns:r="http://xmlns.oracle.com/xdb/XDBResource.xsd"")
WHERE equals_path(
res,
' /home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml ")
=1;

1 row updated.

SELECT XMLCast (XMLQuery (

'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)

Sr/ns:Resource/ns:Contents/PurchaseOrder/User/text ()"

PASSING RES AS "r" RETURNING CONTENT)

AS VARCHAR2 (32))
FROM RESOURCE_VIEW
WHERE equals_path(RES,
' /home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml ")
=1;

XMLCAST (XMLQUERY ( ' DECLARENAMESPA

Using Oracle XML DB 3-79



Using Oracle XML DB Repository

SKING

1 row selected.

Updating XML Schema-Based Documents in the Repository

You can update XML schema-based XML documents by performing the update
operation directly on the default table that is used to manage the content of the
document. If the document must be located by a WHERE clause that includes a path or
conditions based on metadata, then the UPDATE statement must use a join between the
resource and the default table.

In general, when updating the contents of XML schema-based XML documents,
joining the RESOURCE_VIEW or PATH_VIEW with the default table is more efficient
than using the RESOURCE_VIEW or PATH_VIEW on its own. The explicit join between
the resource document and the default table tells Oracle XML DB that the SQL
statement works on only one type of XML document. This lets a partial update be
used on the default table and resource.

In Example 3-59, SQL function updateXML operates on the default table, with the
target row identified by a path. The row to be updated is identified by a REF. The REF
is identified by a repository path using SQL function equals_path. This limits the
update to the row corresponding to the resource identified by the specified path.

Example 3-59 Updating XML Schema-Based Documents in the Repository

UPDATE purchaseorder p
SET p.OBJECT _VALUE = updateXML (p.OBJECT_VALUE, '/PurchaseOrder/User/text()', 'SBELL')
WHERE ref(p) =
(SELECT XMLCast (XMLQuery ('declare default element namespace
"http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
fn:data(/Resource/XMLRef) ' PASSING rv.RES RETURNING CONTENT)
AS REF XMLType)
FROM RESOURCE_VIEW rv
WHERE equals_path(rv.RES,
' /home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml ")
=1);

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/User/text ()"’
PASSING p.OBJECT VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (32))

FROM purchaseorder p, RESOURCE_VIEW rv

WHERE ref (p) = XMLCast (XMLQuery ('declare default element namespace
"http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
fn:data(/Resource/XMLRef)' PASSING rv.RES RETURNING CONTENT)

AS REF XMLType)
AND equals_path(rv.RES, '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml")
=1;

XMLCAST (XMLQUERY (' $P/PURCHASEO

Controlling Access to Repository Data

You can control access to the resources in Oracle XML DB Repository by using access
control lists (ACLs). An ACL is a list of access control entries (ACEs), each of which
grants or denies a set of privileges to a specific principal. The principal can be a
database user, a database role, an LDAP user, an LDAP group or the special principal
DAV : : owner, which refers to the owner of the resource. Each resource in the

3-80 Oracle XML DB Developer's Guide



Using Oracle XML DB Repository

repository is protected by an ACL. The ACL determines what privileges, such as
read-properties and update, a user has on the resource. Each repository
operation includes a check of the ACL to determine if the current user is allowed to
perform the operation.

By default, a new resource inherits the ACL of its parent folder. But you can set the
ACL of a resource using PL/SQL procedure DBMS_XDB. setACL. For more details on
Oracle XML DB resource security, see Chapter 27, "Repository Access Control".

In the following example, the current user is QUINE. The query gives the number of
resources in the folder /public. Assume that there are only two resources in this
folder: £1 and £2. Also assume that the ACL on £1 grants the read-properties
privilege to QUINE while the ACL on £2 does not grant QUINE any privileges. A user
needs the read-properties privilege on a resource for it to be visible to the user.
The result of the query is 1, because only f1 is visible to QUINE.

SELECT count (*) FROM RESOURCE_VIEW r WHERE under_path(r.res, '/public') = 1;

Oracle XML DB Transactional Semantics

When working from SQL, normal transactional behavior is enforced. Multiple calls to
SQL functions such as updateXML can be used within a single logical unit of work.
Changes made through functions like updateXML are not visible to other database
users until the transaction is committed. At any point, ROLLBACK can be used to back
out the set of changes made since the last commit.

Querying Metadata and the Folder Hierarchy

In Oracle XML DB, the system-defined metadata for each resource is preserved as an
XML document. The structure of these resource documents is defined by XML schema
XDBResource.xsd. This schema is registered as a global XML schema at URL
http://xmlns.oracle.com/xdb/XDBResource.xsd.

Oracle XML DB gives you access to metadata and information about the folder
hierarchy using two public views, RESOURCE_VIEW and PATH_VIEW.

RESOURCE_VIEW and PATH_VIEW

RESOURCE_VIEW contains one entry for each file or folder stored in Oracle XML DB
Repository. Column RES of RESOURCE_VIEW contains the resource, an XML document
that manages the metadata properties associated with the resource content. Column
ANY_PATH contains a valid URL that the current user can pass to XDBURIType to
access the resource content. If this content is not binary data, then the resource itself
also contains the content.

Oracle XML DB supports the concept of linking. Linking makes it possible to define
multiple paths to a given document. A separate XML document, called the
link-properties document, maintains metadata properties that are specific to the path,
rather than to the resource. Whenever a resource is created, an initial link is also
created.

PATH_VIEW exposes the link-properties documents. There is one entry in PATH_VIEW
for each possible path to a document. Column RES of PATH_VIEW contains the
resource document pointed to by this link. Column PATH contains the path that the

Using Oracle XML DB 3-81



Using Oracle XML DB Repository

link lets you use to access the resource. Column LINK contains the link-properties
document (metadata) for this PATH.

Example 3-60 shows the description of public views RESOURCE_VIEW and PATH_
VIEW:

Example 3-60 Viewing RESOURCE_VIEW and PATH_VIEW Structures
DESCRIBE RESOURCE_VIEW

Name Null? Type

RES SYS.XMLTYPE (XMLSchema
"http://xmlns.oracle.com/xdb/XDBResource.xsd"
Element
"Resource")

ANY_PATH VARCHAR2 (4000)

RESID RAW(16)

DESCRIBE PATH_VIEW

Name Null? Type

PATH VARCHAR2 (1024)

RES SYS.XMLTYPE (XMLSchema
"http://xmlns.oracle.com/xdb/XDBResource.xsd"
Element
"Resource")

LINK SYS.XMLTYPE

RESID RAW(16)

See Also:

»  Chapter 25, "Accessing the Repository using RESOURCE_
VIEW and PATH_VIEW"

»  Oracle Database Reference for more information about view
PATH_VIEW

»  Oracle Database Reference for more information about view
RESOURCE_VIEW

Querying Resources in RESOURCE_VIEW and PATH_VIEW

Oracle XML DB provides two SQL functions, equals_path and under_path, that
can be used to perform folder-restricted queries. Such queries limit SQL statements
that operate on the RESOURCE_VIEW or PATH_VIEW to documents that are at a
particular location in Oracle XML DB folder hierarchy. Function equals_path
restricts the statement to a single document identified by the specified path. Function
under_path restricts the statement to those documents that exist beneath a certain
point in the hierarchy.

The following examples demonstrate simple folder-restricted queries against resource
documents stored in RESOURCE_VIEW and PATH_VIEW.

The query in Example 3-61 uses SQL function equals_path and RESOURCE_VIEW to
access the resource created in Example 3-60.

3-82 Oracle XML DB Developer's Guide



Using Oracle XML DB Repository

Example 3-61 Accessing Resources using EQUALS_PATH and RESOURCE_VIEW

SELECT XMLSerialize (DOCUMENT r.res AS CLOB)
FROM RESOURCE_VIEW r
WHERE equals_path(res, '/home/QUINE/NurseryRhyme.txt') = 1;

XMLSERIALIZE (DOCUMENTR.RESASCLOB)
<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"

Hidden="false"

Invalid="false"

Container="false"

CustomRslv="false"

VersionHistory="false"

StickyRef="true">
<CreationDate>2005-06-13T13:19:20.566623</CreationDate>
<ModificationDate>2005-06-13T13:19:22.997831</ModificationDate>
<DisplayName>NurseryRhyme. txt</DisplayName>
<Language>en-US</Language>
<CharacterSet>UTF-8</CharacterSet>
<ContentType>text/plain</ContentType>
<RefCount>1</RefCount>
<ACL>

<acl description=
"Private:All privileges to OWNER only and not accessible to others"
xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://xmlns.oracle.com/xdb/acl.xsd
http://xmlns.oracle.com/xdb/acl.xsd"
shared="true">
<ace>
<grant>true</grant>
<principal>dav:owner</principal>
<privilege>
<all/>
</privilege>
</ace>
</acl>
</ACL>
<Owner>QUINE</Owner>
<Creator>QUINE</Creator>
<LastModifier>QUINE</LastModifier>
<SchemaElement>http://xmlns.oracle.com/xdb/XDBSchema.xsd#text</SchemaElement>
<Contents>
<text>Hickory Dickory Dock
The Mouse ran up the clock
The clock struck one
The Mouse ran down
Hickory Dickory Dock
</text>
</Contents>
</Resource>

1 row selected.

As Example 3-61 shows, a resource document is an XML document that captures the
set of metadata defined by the DAV standard. The metadata includes information such
as CreationDate, Creator, Owner, ModificationDate, and DisplayName. The
content of the resource document can be queried and updated just like any other XML
document, using SQL /XML access and query functions.

Using Oracle XML DB  3-83



Using Oracle XML DB Repository

The query in Example 3-62 finds a path to each of the XSL style sheets stored in Oracle
XML DB Repository. It performs a search based on the DisplayName ending in .xs1.

Example 3-62 Determining the Path to XSL Style Sheets Stored in the Repository

SELECT ANY_PATH FROM RESOURCE_VIEW
WHERE XMLCast (XMLQuery (
'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
$r/ns:Resource/ns:DisplayName’
PASSING RES AS "r" RETURNING CONTENT)
AS VARCHAR2 (100))
LIKE '%.xsl';

/source/schemas/poSource/xsl/empdept.xsl
/source/schemas/poSource/xsl/purchaseOrder.xsl

2 rows selected.

The query in Example 3-63 counts the number of resources (files and folders) under
the path /home/QUINE/PurchaseOrders. Using RESOURCE_VIEW rather than
PATH_VIEW ensures that any resources that are the target of multiple links are only
counted once. SQL function under_path restricts the result set to documents that
can be accessed using a path that starts from /home/QUINE/PurchaseOrders.

Example 3-63 Counting Resources Under a Path

SELECT count (*)
FROM RESOURCE_VIEW
WHERE under_path(RES, '/home/QUINE/PurchaseOrders') = 1;

1 row selected.

The query in Example 3-64 lists the contents of the folder identified by path
/home/QUINE/PurchaseOrders/2002/Apr. This is effectively a directory listing of
the folder.

Example 3-64 Listing the Folder Contents in a Path

SELECT PATH
FROM PATH_VIEW
WHERE under_path(RES, '/home/QUINE/PurchaseOrders/2002/Apr') = 1;

/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336171PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336271PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/EABEL-20021009123336251PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/PTUCKER-20021009123336191PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/PTUCKER-20021009123336291PDT . xml
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336231PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336331PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SKING-20021009123336321PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336151PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336341PDT.xml

3-84 Oracle XML DB Developer's Guide



Using Oracle XML DB Repository

/home/QUINE/PurchaseOrders/2002/Apr/VJONES-20021009123336301PDT . xml

11 rows selected.

The query in Example 3-65 lists the set of links contained in the folder identified by
the path /home/QUINE/PurchaseOrders/2002/Apr where the DisplayName
element in the associated resource starts with S.

Example 3-65 Listing the Links Contained in a Folder

SELECT PATH

FROM PATH_VIEW

WHERE XMLCast (XMLQuery (
'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
$r/ns:Resource/ns:DisplayName’
PASSING RES AS "r" RETURNING CONTENT)

AS VARCHAR2 (100))
LIKE 'S%'
AND under_path(RES, '/home/QUINE/PurchaseOrders/2002/Apr') = 1;

/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336231PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336331PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SKING-20021009123336321PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336151PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336341PDT . xml

5 rows selected.

The query in Example 3-66 finds a path to each resource in Oracle XML DB Repository
that contains a PurchaseOrder document. The documents are identified based on
the metadata property SchemaElement that identifies the XML schema URL and
global element for schema-based XML data stored in the repository.

Example 3-66 Finding Paths to Resources that Contain Purchase-Order XML Documents
SELECT ANY_PATH
FROM RESOURCE_VIEW

WHERE XMLExists(
'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
$r/ns:Resource[ns:SchemaElement=

"http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd#PurchaseOrder"]"

PASSING RES AS "r");

The query returns the following paths, each of which contains a PurchaseOrder
document:

/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336171PDT . xml
/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336271PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/EABEL-20021009123336251PDT.xml

/home/QUINE/PurchaseOrders/2002/Apr/PTUCKER-20021009123336191PDT.xml

132 rows selected.

Using Oracle XML DB  3-85



Using Oracle XML DB Repository

Oracle XML DB Hierarchical Repository Index

In a conventional relational database, path-based access and folder-restricted queries
are implemented using CONNECT BY operations. Such queries are expensive, so
path-based access and folder-restricted queries would become inefficient as the
number of documents and depth of the folder hierarchy increase.

To address this issue, Oracle XML DB introduces a new index type, the hierarchical
repository index. This lets the database resolve folder-restricted queries without
relying on a CONNECT BY operation. Because of this, Oracle XML DB can execute
path-based and folder-restricted queries efficiently. The hierarchical repository index is
implemented as an Oracle domain index. This is the same technique used to add
Oracle Text indexing support and many other advanced index types to the database.

Example 3-67 shows the execution plan output generated for a folder-restricted query.
As shown, the hierarchical repository index XDBHI_IDX is used to resolve the query.

Example 3-67 Execution Plan Output for a Folder-Restricted Query

SELECT PATH
FROM PATH_VIEW
WHERE XMLCast (
XMLQuery (
'declare namespace ns="http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
$r/ns:Resource/ns:DisplayName'’
PASSING RES AS "r" RETURNING CONTENT)
AS VARCHAR2 (100))
LIKE 'S%'

AND under_path(RES, '/home/QUINE/PurchaseOrders/2002/Apr') = 1;
PLAN_TABLE_OUTPUT
Plan hash value: 2568289845
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT \ \ 17 | 3111 | 34 (6)]| 00:00:01 |
| 1| NESTED LOOPS | | 17 | 3111 | 34 (6)] 00:00:01 |
| 2| NESTED LOOPS | | 17 | 2822 | 34 (6)]| 00:00:01 |
| 3] NESTED LOOPS | | 466 | 63842 | 34 (6)] 00:00:01 |
[* 4 | TABLE ACCESS BY INDEX ROWID | XDBSRESOURCE | 1] 135 | 3 (0)] 00:00:01 |
[* 5 | DOMAIN INDEX | XDBHI_IDX | | | | |
| 6| COLLECTION ITERATOR PICKLER FETCH| \ \ \ | \
[* 7 | INDEX UNIQUE SCAN | XDB_PK_H_LINK | 1| 28 | 0 (0)] 00:00:01 |
|* 8 | INDEX UNIQUE SCAN | SYys_co03900 | 1 17 | 0 (0)] 00:00:01 |

filter (CAST("P"."SYS_NC00011$" AS VARCHAR2(100)) LIKE 'S%')

5 - access("XDB"."UNDER_PATH" (SYS_MAKEXML ('8758D485E6004793E034080020B242C6"',734, "XMLEXTRA"
, "XMLDATA") , ' /home/QUINE/PurchaseOrders/2002/Apr',9999)=1)

7 - access("H"."PARENT_OID"=SYS_OP_ATG (VALUE (KOKBFS$),b3,4,2) AND
"H"."NAME"=SYS_OP_ATG (VALUE (KOKBFS$) ,2,3,2))

8 - access("R2"."SYS_NC_OID$"=SYS_OP_ATG (VALUE (KOKBFS),3,4,2))

25 rows selected.

3-86 Oracle XML DB Developer's Guide



Viewing Relational Data as XML From a Browser

How Documents are Stored in the Repository

Oracle XML DB provides special handling for XML documents. The rules for storing
the contents of schema-based XML document are defined by the XML schema. The
content of the document is stored in the default table associated with the global
element definition.

Oracle XML DB Repository also stores files that do not contain XML data, such as
JPEG images or Word documents. The XML schema for each resource defines which
elements are allowed, and specifies whether the content of these files is to be stored as
BLOB or CLOB instances. The content of a non-schema-based XML document is stored
as a CLOB instance in the repository.

There is one resource and one link-properties document for each file or folder in the
repository. If there are multiple access paths to a given document, there is a
link-properties document for each possible link. Both the resource document and the
link-properties are stored as XML documents. All these documents are stored in tables
in the repository.

When an XML file is loaded into the repository, the following sequence of events takes
place:

1. Oracle XML DB examines the root element of the XML document to see if it is
associated with a known (registered) XML schema. This involves looking to see if
the document includes a namespace declaration for the XML.Schema-instance
namespace, and then looking for a schemaLocation or
noNamespaceSchemal.ocation attribute that identifies which XML schema the
document is associated with.

2. If the document is based on a known XML schema, then the metadata for the XML
schema is loaded from the XML schema cache.

3. The XML document is parsed and decomposed into a set of SQL objects derived
from the XML schema.

4. The SQL objects created from the XML file are stored in the default table defined
when the XML schema was registered with the database.

5. A resource document is created for each document processed. This lets the content
of the document be accessed using the repository. The resource document for an
XML schema-based XMLType instance includes an XMLRe f element. This element
contains a REF of XMLType that can be used to locate the row in the default table
containing the content associated with the resource.

Viewing Relational Data as XML From a Browser

The HTTP server built into Oracle XML DB makes it possible to use a browser to
access any document stored in Oracle XML DB Repository. Since a resource can
include a REF to a row in an XMLType table or view, it is possible to use a path to
access this type of content.

Accessing a Table or View from a Browser using DBUri SERVLET

Oracle XML DB includes the DBUTri servlet, which makes it possible to access the
content of any table or view directly from a browser. DBUri servlet uses the facilities of
the DBURIType to generate a simple XML document from the contents of the table.
The servlet is C language-based and installed in the Oracle XML DB HTTP server. By
default, the servlet is installed under the virtual directory /oradb.

Using Oracle XML DB  3-87



XSL Transformation using DBUri Servlet

The URL passed to the DBUr 1 Servlet is an extension of the URL passed to the
DBURIType. The URL is extended with the address and port number of the Oracle
XML DB HTTP server and the virtual root that directs HTTP(S) requests to the DBUri
servlet. The default configuration for this is /oradb.

The URL http://localhost:8080/oradb/HR/DEPARTMENTS would thus return
an XML document containing the contents of the DEPARTMENTS table in the HR
database schema. This assumes that the Oracle XML DB HTTP server is running on
port 8080, the virtual root for the DBUTri servlet is /oradb, and that the user making
the request has access to the HR database schema.

DBUr1i servlet accepts parameters that allow you to specify the name of the ROW tag
and MIME-type of the document that is returned to the client.

Content in XML Type table or view can also be accessed through the DBUTri servlet.
When the URL passed to the DBUTri servlet references an XMLType table or XMLType
view the URL can be extended with an XPath expression that can determine which
documents in the table or row are returned. The XPath expression appended to the
URL can reference any node in the document.

XML generated by DBUTri servlet can be transformed using the XSLT processor built
into Oracle XML DB. This lets XML that is generated by DBUTri servlet be presented in
a more legible format such as HTML.

See Also: "DBUriServlet" on page 20-26

Style sheet processing is initiated by specifying a transform parameter as part of the
URL passed to DBUTri servlet. The style sheet is specified using a URI that references
the location of the style sheet within database. The URI can either be a DBURIType
value that identifies a XMLType column in a table or view, or a path to a document
stored in Oracle XML DB Repository. The style sheet is applied directly to the
generated XML before it is returned to the client. When using DBUTri servlet for XSLT
processing, it is good practice to use the contenttype parameter to explicitly specify
the MIME type of the generated output.

If the XML document being transformed is stored as an XML schema-based XMLType
instance, then Oracle XML DB can reduce the overhead associated with XSL
transformation by leveraging the capabilities of the lazily loaded virtual DOM.

The root of the URL is /oradb, so the URL is passed to the DBUTri servlet that accesses
the purchaseorder table in the SCOTT database schema, rather than as a resource in
Oracle XML DB Repository. The URL includes an XPath expression that restricts the
result set to those documents where node /PurchaseOrder/Reference/text ()
contains the value specified in the predicate. The contenttype parameter sets the
MIME type of the generated document to text /xml.

XSL Transformation using DBUri Servlet

Figure 3-7 shows how an XSL transformation can be applied to XML content
generated by the DBUTri servlet. In this example the URL passed to the DBUri includes
the transform parameter. This causes the DBUTri servlet to use Oracle SQL function
XMLtransform to apply the style sheet /home/SCOTT/xsl/purchaseOrder.xsl
to the PurchaseOrder document identified by the main URL, before returning the
document to the browser. This style sheet transforms the XML document to a more
user-friendly HTML page. The URL also uses contentType parameter to specify that
the MIME-type of the final document is text /html.

3-88 Oracle XML DB Developer's Guide



XSL Transformation using DBUri Servlet

Figure 3-7 Database XSL Transformation of a PurchaseOrder using DBUri Serviet

i/ /localhost:8080,/oradb/SCOTT/PURCHASEDORDER /ROW /PurchaseOrder[Reference="SBELL-200303091233 - Microsoft Inte: &=l
File Edt View Favorites Tools  Help ‘.J,f

OBack - \_) - d @ o ‘ P ) search ‘-":c'Favontes wMedia @2‘ e @ E I& ‘3
Address I@ http:H\ocalhost:BUSDforadbeCOTTIPURCHASEORDERﬂROWIPurchaseOrder[Reference=”SEELL72003U30912333601PDT”]7contenttype=textp’html&transfurm=fhomefsc0‘lj Go ‘L\Hks >

Google - ||t searchwet - | g3 | Bbiss0tiocked 5l curl ] | B options A

SBELL-2003030912333601PDT

Name

Actions Address

Requestor
User
Cost Center

Telephone

ItemNumber|Description Partld Quantity|Unit Price|Total Price

A Night to Remember 715515009058(2 39.95 79.900000000000008
The Unbearable Lightness Of Being|37429140222 |2 29.95 59.899999999999999
The Wizard of Oz 715515011020[4 29.95 119.79999999993339397

&) pene [ s Localinkranct

Figure 3-8 shows the departments table displayed as an HTML document. You need
no code to achieve this, you only need an XMLType view, based on SQL/XML
functions, an industry-standard XSL style sheet, and DBUr 1 servlet.

Using Oracle XML DB 3-89



XSL Transformation using DBUri Servlet

Figure 3-8 Database XSL Transformation of Departments Table using DBUFri Servlet

A http:/flocalhost: BOBOJoradb/SCOTT/DEPARTMENT_XML?contenttype=text/htmi&rowsettag-ROWSETEtransfo - Microsoft Inter... (= |[B]5¢]
L

File Edit ‘Wiew Favorites Tools Help o

OBack - ﬂ g . P :.'\_'Favorites “J"Media e

Address Eﬁ http:fflocalhost:G050for adb)SCOTT/DEPARTMENT _¥MLPcontenttype=text/htmliirowsettag=ROWSET&transform=/homefSCOTT jpoSource fxslfempdept ﬂ Go

Links @] Aria @] Customize Links @] Free Hatmail ] My Oracle @] Metwork Request @] Oracle CRM @& Oracle Email ] Software & Windows &

DEPARTMEINT LOCATION EMPLOYEES
IT 2014 Jabberwocky Rd

Southlale

Texas

26192

United States of

America

Shipping 2011 Interiors Blvd
South San Francisco
Califormia
99236
United States of
America

&] Done % Local intranet

3-90 Oracle XML DB Developer's Guide



Part Il

Storing and Retrieving XML Data in Oracle

XML DB

Part II of this manual introduces you to ways you can store, retrieve, validate, and
transform XML data using Oracle XML DB. It contains the following chapters:

Chapter 4, "XMLIype Operations"

Chapter 5, "Using XQuery with Oracle XML DB"

Chapter 6, "Indexing XMLType Data"

Chapter 7, "XML Schema Storage and Query: Basic"
Chapter 8, "XPath Rewrite for Structured Storage”
Chapter 9, "XML Schema Storage and Query: Advanced"
Chapter 10, "XML Schema Evolution"

Chapter 11, "Transforming and Validating XMLType Data"
Chapter 12, "Full-Text Search Over XML Data"






4

XMLType Operations

This chapter describes XMLType operations for XML applications (XML schema-based
and non-schema-based). It includes guidelines for creating, manipulating, updating,
and querying XMLType columns and tables.

This chapter contains these topics:
s Selecting and Querying XML Data
s Updating XML Data

See Also:

»  Chapter 3, "Using Oracle XML DB" for XML Type storage
recommendations

»  Chapter 7, "XML Schema Storage and Query: Basic" for how to
work with XML schema-based XML Type tables and columns

Selecting and Querying XML Data
You can query XML data from XMLType columns in the following ways:
= Select XMLType columns using SQL, PL/SQL, or Java.
= Use the XQuery language. See "Using XQuery with XMLType Data" on page 5-23.

s Query XMLType columns directly or using SQL/XML functions such as
XMLQuery.

= Use Oracle Text operators for full-text search. See Chapter 6, "Indexing XMLType
Data" and Chapter 12, "Full-Text Search Over XML Data".

Searching XML Documents using XPath Expressions

The XPath language is a W3C Recommendation for navigating XML documents. It is a
subset of the XQuery language, in the sense that an XPath expression is also an
XQuery expression.

XPath models an XML document as a tree of nodes. It provides a rich set of operations
that walk this tree and apply predicates and node-test functions. Applying an XPath
expression to an XML document can result in a set of nodes. For example, the
expression /PO/PONO selects all PONO child elements under the PO root element of the
document.

XMLType Operations 4-1



Selecting and Querying XML Data

Note: Oracle SQL functions and XMLType methods respect the W3C
XPath recommendation, which states that if an XPath expression
targets no nodes when applied to XML data, then an empty sequence
must be returned. An error must not be raised in this case.

The specific semantics of an Oracle SQL function or XMLType method
that applies an XPath expression to XML data determines what is
returned. For example, SQL/XML function XMLQuery returns NULL if
its XPath-expression argument targets no nodes, and the updating
SQL functions, such as deleteXML, return the input XML data
unchanged. An error is never raised if no nodes are targeted, but
updating SQL functions can raise an error if an XPath-expression
argument targets inappropriate nodes, such as attribute nodes or text
nodes.

Table 4-1 lists some common constructs used in XPath.

Table 4-1 Common XPath Constructs

XPath Construct

Description

/

Denotes the root of the tree in an XPath expression. For example, /PO refers to the
child of the root node whose name is PO.

Also used as a path separator to identify the children node of any given node. For
example, /PurchaseOrder/Reference identifies the purchase-order name element
Reference, a child of the root element.

//

Used to identify all descendants of the current node. For example,
PurchaseOrder//ShippingInstructions matches any
ShippingInstructions element under the PurchaseOrder element.

Used as a wildcard to match any child node. For example, /PO/* /STREET matches
any street element that is a grandchild of the PO element.

Used to denote predicate expressions. XPath supports a rich list of binary operators
such as or, and, and not. For example, /PO[PONO = 20 and PNAME = "PO_
2"]/SHIPADDR selects the shipping address element of all purchase orders whose
purchase-order number is 20 and whose purchase-order name is PO_2.

Brackets are also used to denote a position (index). For example, /PO/PONO[2]
identifies the second purchase-order number element under the PO root element.

Functions

XPath and XQuery support a set of built-in functions such as substring, round, and
not. In addition, these languages provide for extension functions through the use of
namespaces. Oracle XQuery extension functions use the namespace prefix ora, for
namespace http://xmlns.oracle.com/xdb. See "Oracle XQuery Extension
Functions" on page 5-11.

The XPath must identify a single node, or a set of element, text, or attribute nodes. The
result of the XPath cannot be a Boolean expression.

You can select XML Type data using PL/SQL, C, or Java. You can also use XMLType
method getNumberVal () to retrieve XML data as a NUMBER.

Querying XMLType Data using SQL/XML Functions XMLExists and XMLCast

You can query XMLType data and extract portions of it using SQL /XML standard
functions XMLQuery, XMLTable, XMLExists, and XMLCast.

4-2 Oracle XML DB Developer's Guide



Selecting and Querying XML Data

See Chapter 5, "Using XQuery with Oracle XML DB" for more information about
functions XMLQuery and XMLTable. Functions XMLExists and XMLCast are
described in this section.

XMLEXISTS SQL/XML Function

Figure 4-1 describes the syntax for SQL/XML standard function XMLExists. This
function checks whether a given XQuery expression returns a non-empty XQuery
sequence. If so, the function returns TRUE. Otherwise, it returns FALSE.

Figure 4-1 XMLEXists Syntax

XML _passing_clause
—{ XMLEXISTS @{xouery_string) @

XML_passing_clause ::=

M
)

- |

—>| PASSING { expr )

s  XQuery stringisa complete XQuery expression, possibly including a prolog, as
a literal string. It can contain XQuery variables that you bind using the XQuery
PASSING clause (XML_passing clause in the syntax diagram). The predefined
namespace prefixes recognized for SQL/XML function XMLQuery are also
recognized in XQuery. string—see "Predefined Namespaces and Prefixes" on
page 5-9.

s The XML, passing clauseis the keyword PASSING followed by one or more
SQL expressions (expr) that each return an XMLType instance or an instance of a
SQL scalar data type. All but possibly one of the expressions must each be
followed by the keyword AS and an XQuery identifier. The result of
evaluating each expr is bound to the corresponding identifier for the
evaluation of XQuery. string.If there is an expr that is not followed by an AS
clause, then the result of evaluating that expr is used as the context item for
evaluating XQuery._ string. Oracle XML DB supports only passing BY VALUE,
not passing BY REFERENCE, so the clause BY VALUE is implicit and can be
omitted.

If an XQuery expression such as /PurchaseOrder/Reference or
/PurchaseOrder/Reference/text () targets a single node, then XMLExists
returns true for that expression. If XMLExists is called with an XQuery expression
that locates no nodes, then XMLExists returns false.

Function XMLExists can be used in queries, and it can be used to create
function-based indexes to speed up evaluation of queries.

Note: Oracle XML DB limits the use of XMLExists to a SQL WHERE
clause or CASE expression. If you need to use XMLExistsina
SELECT list, then wrap it in a CASE expression:

CASE WHEN XMLExists(...) THEN 'TRUE' ELSE 'FALSE' END

Example 4-1 uses SQL /XML standard function XMLEx1ists to select rows with
SpecialInstructions set to Expedite.

XMLType Operations 4-3



Selecting and Querying XML Data

Example 4-1 Finding a Node using SQL/XML Function XMLEXxists

SELECT OBJECT_VALUE
FROM purchaseorder
WHERE XMLExists('/PurchaseOrder[SpeciallInstructions="Expedite"]"
PASSING OBJECT_VALUE) ;

OBJECT_VALUE

<PurchaseOrder xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
<PurchaseOrder xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"

13 rows selected.

You can create function-based indexes using SQL/XML function XMLExists to speed
up the execution. You can also create an XMLIndex index to help speed up arbitrary
XQuery searching.

Note: Prior to Oracle Database 11g Release 2, some users employed
Oracle SQL function existsNode to do some of what can be done
better using SQL/XML function XMLExists. Function existsNode
is deprecated in Oracle Database 11g Release 2. The two functions differ
in these important ways:

s Function existsNode returns 0 or 1. Function XMLExists
returns a Boolean value, TRUE or FALSE.

= You can use existsNode in a query SELECT list. You cannot use
XMLExists directly in a SELECT list, but you can use
XMLExists within a CASE expression in a SELECT list.

See Also:

= "Indexing XMLType Data Stored Object-Relationally" on
page 6-6

= "XMLIndex" on page 6-7

XMLCAST SQL/XML Function
Figure 4-2 describes the syntax for SQL /XML standard function XMLCast.

Figure 4-2 XMLCast Syntax

—>| XMLCAST P@{value_expressionﬂ AS Kdatatype)s@»

4-4 Oracle XML DB Developer's Guide



Selecting and Querying XML Data

SQL/XML standard function XMLCast casts its first argument to the scalar SQL data
type specified by its second argument. The first argument is a SQL expression that is
evaluated. Any of the following SQL data types can be used as the second argument:

= NUMBER

s VARCHAR2

= CHAR
= CLOB
= BLOB

s REF XMLTYPE

= any SQL date or time data type

Note: Unlike the SQL/XML standard, Oracle XML DB limits the use
of XMLCast to cast XML to a SQL scalar data type. Oracle XML DB
does not support casting XML to XML or from a scalar SQL type to
XML.

The result of evaluating the first XMLCast argument is an XML value. It is converted
to the target SQL data type by using the XQuery atomization process and then casting
the XQuery atomic values to the target data type. If this conversion fails, then an error
is raised. If conversion succeeds, the result returned is an instance of the target data

type.

The query in Example 4-2 extracts the scalar value of node Reference.

Example 4-2 Extracting the Scalar Value of an XML Fragment using XMLCAST

SELECT XMLCast (XMLQuery ('/PurchaseOrder/Reference' PASSING OBJECT_VALUE
RETURNING CONTENT)
AS VARCHAR2 (100)) "REFERENCE"
FROM purchaseorder
WHERE XMLExists('/PurchaseOrder[Speciallnstructions="Expedite"]"
PASSING OBJECT_VALUE) ;

REFERENCE
AMCEWEN-20021009123336271PDT
SKING-20021009123336321PDT
AWALSH-20021009123337303PDT
JCHEN-20021009123337123PDT
AWALSH-20021009123336642PDT
SKING-20021009123336622PDT
SKING-20021009123336822PDT
AWALSH-20021009123336101PDT
WSMITH-20021009123336412PDT
AWALSH-20021009123337954PDT
SKING-20021009123338294PDT
WSMITH-20021009123338154PDT
TFO0X-20021009123337463PDT

13 rows selected.

XMLType Operations 4-5



Selecting and Querying XML Data

Note:

»  Prior to Oracle Database 11g Release 2, some users employed
Oracle SQL function extractValue to do some of what can be
done better using SQL /XML functions XMLQuery and XMLCast.
Function extractValue is deprecated in Oracle Database 11g
Release 2.

s Function extractvalue raises an error when its XPath
expression argument matches multiple text nodes. XMLCast
applied to an XMLQuery result returns the concatenation of the
text nodes—it does not raise an error.

See Also:

s "Indexing XMLIype Data Stored Object-Relationally" on
page 6-6

s "XMLIndex" on page 6-7

Examples of Querying XML Data using SQL/XML Functions

The examples in this section illustrate ways you can use SQL to query XML data.
Example 4-3 inserts two rows into table purchaseorder, then queries data in those
rows using SQL/XML functions XMLCast, XMLQuery, and XMLExists.

Example 4-3 Querying XMLTYPE Data

INSERT INTO purchaseorder
VALUES (XMLType (bfilename ('XMLDIR', 'SMCCAIN-2002091213000000PDT.xml"'),
nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
VALUES (XMLType (bfilename ('XMLDIR', 'VJONES-20020916140000000PDT.xml"),
nls_charset_id('AL32UTF8')));

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Reference’
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30)) reference,
XMLCast (XMLQuery (' $Sp/PurchaseOrder/*//User'
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30)) userid,
CASE
WHEN XMLExists('Sp/PurchaseOrder/Reject/Date’
PASSING po.OBJECT_VALUE AS "p")
THEN 'Rejected’
ELSE 'Accepted'
END "STATUS",
XMLCast (XMLQuery (' $p//Date’
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (12)) status_date
FROM purchaseorder po
WHERE XMLExists('$p//Date' PASSING po.OBJECT_VALUE AS "p")
ORDER BY XMLCast (XMLQuery ('$p//Date' PASSING po.OBJECT VALUE AS "p"
RETURNING CONTENT)
AS VARCHAR2 (12));

REFERENCE USERID STATUS STATUS_DATE

Oracle XML DB Developer's Guide



Selecting and Querying XML Data

VJONES-20020916140000000PDT SVOLLMAN Accepted 2002-10-11
SMCCAIN-2002091213000000PDT SKING Rejected 2002-10-12

2 rows selected.

Example 44 uses a PL/SQL cursor to query XML data. It uses a local XMLType
instance to store transient data.

Example 4-4 Querying Transient XMLTYPE Data using a PL/SQL Cursor

DECLARE
xNode XMLType;
vText VARCHAR2 (256) ;

vReference VARCHAR2 (32);
CURSOR getPurchaseOrder (reference IN VARCHAR2) IS
SELECT OBJECT_VALUE XML
FROM purchaseorder
WHERE XMLExists ('S$p/PurchaseOrder [Reference=$r]"
PASSING OBJECT VALUE AS "p",
reference AS "r");
BEGIN
vReference := 'EABEL-20021009123335791PDT';
FOR ¢ IN getPurchaseOrder (vReference) LOOP
xNode := c.XML.extract('//Requestor');
SELECT XMLSerialize (CONTENT
XMLQuery ('//text()' PASSING xNode RETURNING CONTENT) )
INTO vText FROM DUAL;
DBMS_OUTPUT.put_line('The Requestor for Reference '
|| vReference || ' is '|| vText);
END LOOP;
vReference := 'PTUCKER-20021009123335430PDT';
FOR ¢ IN getPurchaseOrder (vReference) LOOP
xNode := c.XML.extract('//LineItem[@ItemNumber="1"]/Description');
SELECT XMLSerialize (CONTENT
XMLQuery ('//text()' PASSING xNode RETURNING CONTENT))
INTO vText FROM DUAL;
DBMS_OUTPUT.put_line('The Description of LineItem[l] for Reference '
|| vReference || ' is '|| vText);
END LOOP;
END;
/
The Requestor for Reference EABEL-20021009123335791PDT is Ellen S. Abel
The Description of LineItem[1l] for Reference PTUCKER-20021009123335430PDT is
Picnic at
Hanging Rock

PL/SQL procedure successfully completed.

Example 4-5 uses SQL /XML function XMLTable to extract data from an XML
purchase-order document, and then inserts that data into a relational table.

Example 4-5 Extracting XML Data using XMLTABLE, and Inserting It into a Database Table

CREATE TABLE purchaseorder_table (reference VARCHAR2 (28) PRIMARY KEY,
requestor VARCHAR2 (48) ,
actions XMLType,
userid VARCHAR2 (32),
costcenter VARCHAR2 (3),
shiptoname VARCHAR? (48) ,
address VARCHAR2 (512),

XMLType Operations 4-7



Selecting and Querying XML Data

phone
rejectedby
daterejected
comments

VARCHAR2 (32) ,
VARCHAR2 (32)
DATE,

VARCHAR2 (2048) ,

specialinstructions VARCHAR2 (2048));

CREATE TABLE purchaseorder_lineitem (reference,

FOREIGN KEY

("REFERENCE")

REFERENCES "PURCHASEORDER_TABLE" ("REFERENCE") ON DELETE CASCADE,
lineno NUMBER (10), PRIMARY KEY ("REFERENCE", "LINENO")
upc VARCHAR2 (14),
description VARCHAR2(128),
quantity NUMBER (10) ,
unitprice NUMBER (12,2)) ;

INSERT INTO purchaseorder_table (reference, requestor, actions, userid, costcenter, shiptoname, address,
phone, rejectedby, daterejected, comments, specialinstructions)
SELECT t.reference, t.requestor, t.actions, t.userid, t.costcenter, t.shiptoname, t.address,
t.phone, t.rejectedby, t.daterejected, t.comments, t.specialinstructions

FROM purchaseorder p,

XMLTable (' /PurchaseOrder' PASSING p.OBJECT_VALUE

COLUMNS reference VARCHAR?2 (28) PATH
requestor VARCHAR?2 (48) PATH
actions XMLType PATH
userid VARCHAR2 (32) PATH
costcenter VARCHAR2 (3) PATH
shiptoname VARCHAR? (48) PATH
address VARCHAR2 (512) PATH
phone VARCHAR2 (32) PATH
rejectedby VARCHAR?2 (32) PATH
daterejected DATE PATH
comments VARCHAR2 (2048) PATH
specialinstructions VARCHAR2 (2048) PATH

WHERE t.reference

'EABEL-20021009123336251PDT" ;

INSERT INTO purchaseorder_lineitem (reference,

'Reference’,

'Requestor’',

'Actions',

'User',

'CostCenter',
'ShippingInstructions/name',
'ShippingInstructions/address"',
'ShippingInstructions/telephone',
'Reject/User"',

'Reject/Date’,
'Reject/Comments’',
'SpecialInstructions') t

lineno, upc, description, quantity, unitprice)

SELECT t.reference, li.lineno, li.upc, li.description, li.quantity, li.unitprice

FROM purchaseorder p,
XMLTable ('/PurchaseOrder' PASSING p.OBJECT_VALUE
COLUMNS reference VARCHAR2 (28) PATH 'Reference',

lineitem XMLType PATH 'LineItems/LineItem') t,

XMLTable ('LineItem' PASSING t.lineitem

COLUMNS lineno NUMBER (10) PATH '@ItemNumber',
upc VARCHAR2 (14) PATH 'Part/@Id',
description VARCHAR2 (128) PATH 'Description',
quantity NUMBER (10) PATH 'Part/@Quantity',
unitprice NUMBER(12,2) PATH 'Part/@UnitPrice') 1i

WHERE t.reference 'EABEL-20021009123336251PDT" ;

SELECT reference, userid, shiptoname, specialinstructions FROM purchaseorder_table;

REFERENCE USERID SHIPTONAME

EABEL-20021009123336251PDT EABEL Ellen S. Abel

SPECIALINSTRUCTIONS

Counter to Counter

SELECT reference, lineno, upc, description, quantity FROM purchaseorder_lineitem;

REFERENCE LINENO UPC
EABEL-20021009123336251PDT
EABEL-20021009123336251PDT
EABEL-20021009123336251PDT

1 37429125526
2 37429128220
3 715515009058

DESCRIPTION
Samurai 2: Duel at Ichijoji Temple
The Red Shoes

A Night to Remember

QUANTITY

Example 4-6 defines and uses a PL/SQL procedure to extract data from an XML
purchase-order document and insert it into a relational table.

4-8 Oracle XML DB Developer's Guide



Selecting and Querying XML Data

Example 4-6 Extracting XML Data and Inserting It into a Table using a PL/SQL Procedure

CREATE OR REPLACE PROCEDURE insertPurchaseOrder (purchaseorder XMLType) AS reference VARCHAR2 (28);
BEGIN
INSERT INTO purchaseorder_table (reference, requestor, actions, userid, costcenter, shiptoname, address,
phone, rejectedby, daterejected, comments, specialinstructions)
SELECT * FROM XMLTable('S$p/PurchaseOrder' PASSING purchaseorder AS "p"

COLUMNS reference VARCHAR?2 (28) PATH 'Reference’,
requestor VARCHAR2 (48) PATH 'Requestor',
actions XMLType PATH 'Actions',
userid VARCHAR2 (32) PATH 'User',
costcenter VARCHAR2 (3) PATH 'CostCenter'
shiptoname VARCHAR? (48) PATH 'ShippingInstructions/name’,
address VARCHAR2 (512) PATH 'ShippingInstructions/address',
phone VARCHAR? (32) PATH 'ShippingInstructions/telephone',
rejectedby VARCHAR2 (32) PATH 'Reject/User'
daterejected DATE PATH 'Reject/Date',
comments VARCHAR2 (2048) PATH 'Reject/Comments',

specialinstructions VARCHAR2 (2048) PATH 'SpeciallInstructions');

INSERT INTO purchaseorder_lineitem (reference, lineno, upc, description, quantity, unitprice)
SELECT t.reference, li.lineno, li.upc, li.description, li.quantity, li.unitprice
FROM XMLTable ('S$p/PurchaseOrder' PASSING purchaseorder AS "p"
COLUMNS reference VARCHAR2 (28) PATH 'Reference’,
lineitem XMLType PATH 'Lineltems/Lineltem') t,
XMLTable ('LineItem' PASSING t.lineitem
COLUMNS lineno NUMBER(10) PATH '@ItemNumber'
upc VARCHAR2 (14) PATH 'Part/@Id',
description VARCHAR2(128) PATH 'Description',
quantity NUMBER(10) PATH 'Part/@Quantity',
unitprice NUMBER(12,2) PATH 'Part/@UnitPrice') 1i;
END;
CALL insertPurchaseOrder (XMLType (bfilename ('XMLDIR', 'purchaseOrder.xml'), nls_charset_id('AL32UTF8')));

SELECT reference, userid, shiptoname, specialinstructions FROM purchaseorder_table;
REFERENCE USERID SHIPTONAME SPECIALINSTRUCTIONS

SBELL-2002100912333601PDT SBELL Sarah J. Bell Air Mail

SELECT reference, lineno, upc, description, quantity FROM purchaseorder_lineitem;

REFERENCE LINENO UPC DESCRIPTION QUANTITY
SBELL-2002100912333601PDT 1 715515009058 A Night to Remember 2
SBELL-2002100912333601PDT 2 37429140222 The Unbearable Lightness Of Being 2
SBELL-2002100912333601PDT 3 715515011020 Sisters 4

Example 4-7 extracts the purchase-order name from XML element PurchaseOrder
for customers with "11" (double L) in their names and the word "Shores" in the
shipping instructions. It uses Oracle XQuery extension function ora:contains to
perform full-text search.

Example 4-7 Searching XML Data using SQL/XML Functions

SELECT XMLCast (XMLQuery (' $p/PurchaseOrder/Requestor’
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (128)) name,
count (*)
FROM purchaseorder po
WHERE
XMLExists (
'declare namespace ora="http://xmlns.oracle.com/xdb"; (: :)
$p/PurchaseOrder/ShippingInstructions[ora:contains (address/text (), "Shores") > 0]'
PASSING po.OBJECT_VALUE AS "p")

XMLType Operations 4-9



Updating XML Data

AND XMLCast (XMLQuery ('Sp/PurchaseOrder/Requestor/text ()"
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (128))
LIKE '%11%'
GROUP BY XMLCast (XMLQuery ('S$p/PurchaseOrder/Requestor’
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (128));

NAME COUNT (*)
Allan D. McEwen 9
Ellen S. Abel 4
Sarah J. Bell 13
William M. Smith 7

Example 4-8 uses SQL /XML function XMLQuery to extract nodes identified by an
XPath expression. The XMLType instance returned by XMLQuery can be a set of nodes,
a singleton node, or a text value. Example 4-8 uses XMLType method isFragment ()
to determine whether the result is a fragment.

Example 4-8 Extracting Fragments from an XMLTYPE Instance using XMLQUERY

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Reference' PASSING po.OBJECT_VALUE AS "p"
RETURNING CONTENT)
AS VARCHAR2(30)) reference,
count (*)
FROM purchaseorder po, XMLTable('S$Sp//Lineltem[Part/@Id="37429148327"]' PASSING OBJECT_VALUE AS "p")
WHERE XMLQuery ('S$p/PurchaseOrder/Lineltems/Lineltem[Part/@Id="37429148327"]"
PASSING po.OBJECT VALUE AS "p" RETURNING CONTENT) .isFragment() = 1
GROUP BY XMLCast (XMLQuery ('$p/PurchaseOrder/Reference' PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30))
ORDER BY XMLCast (XMLQuery ('$p/PurchaseOrder/Reference' PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30)) ;

REFERENCE COUNT (*)

TFO0X-20021009123337784PDT 3

Note: You cannot insert fragments into XMLType columns. You
can use SQL function sys_XMLGen to convert a fragment into a
well-formed document by adding an enclosing tag. See "SYS_
XMLGEN Oracle SQL Function" on page 18-46.

Updating XML Data

This section covers updating XML data, both transient data and data stored in tables.
It describes the use of the following SQL functions:

s updateXML

m insertChildXML

m insertChildXMLbefore
m insertChildXMLafter
m insertXMLbefore

m insertXMLafter

s appendChildXML

s deleteXML

4-10 Oracle XML DB Developer's Guide



Updating XML Data

Updating an Entire XML Document

For unstructured storage (CLOB), an update effectively replaces the entire document.
To update an entire XML document, use a SQL UPDATE statement. The right side of
the UPDATE statement SET clause must be an XMLType instance. This can be created in
any of the following ways:

s Use SQL functions or XML constructors that return an XML instance.

s Use the PL/SQL DOM APIs for XMLType that change and bind an existing XML
instance.

s Use the Java DOM API that changes and binds an existing XML instance.

Updates for non-schema-based XML documents stored as CLOB values (unstructured
storage) always update the entire XML document. Updates for non-schema-based
documents stored as binary XML can be made in a piecewise manner. See "Updating
XML Schema-Based and Non-Schema-Based XML Documents" on page 3-57.

Example 4-9 updates an XMLType instance using a SQL UPDATE statement.

Example 4-9 Updating XMLType Data using a SQL UPDATE Statement

SELECT t.reference, 1li.lineno, 1li.description
FROM purchaseorder po,
XMLTable ('$p/PurchaseOrder' PASSING po.OBJECT_VALUE AS "p"
COLUMNS reference VARCHAR2 (28) PATH 'Reference’',

lineitem XMLType PATH 'LinelItems/LinelItem') t,
XMLTable('$1/Lineltem' PASSING t.lineitem AS "1"
COLUMNS lineno NUMBER (10) PATH '@ItemNumber',

description VARCHAR2(128) PATH 'Description') 1i
WHERE t.reference = 'DAUSTIN-20021009123335811PDT' AND ROWNUM < 6;

REFERENCE LINENO DESCRIPTION
DAUSTIN-20021009123335811PDT 1 Nights of Cabiria
DAUSTIN-20021009123335811PDT 2 For All Mankind
DAUSTIN-20021009123335811PDT 3 Dead Ringers
DAUSTIN-20021009123335811PDT 4 Hearts and Minds
DAUSTIN-20021009123335811PDT 5 Rushmore

UPDATE purchaseorder po
SET po.OBJECT _VALUE = XMLType (bfilename ('XMLDIR', 'NEW-DAUSTIN-20021009123335811PDT.xml"),
nls_charset_id('AL32UTF8'))
WHERE XMLExists ('S$Sp/PurchaseOrder [Reference="DAUSTIN-20021009123335811PDT"]"
PASSING po.OBJECT_VALUE AS "p");

SELECT t.reference, 1li.lineno, 1li.description
FROM purchaseorder po,
XMLTable ('$p/PurchaseOrder' PASSING po.OBJECT_VALUE AS "p"
COLUMNS reference VARCHAR2 (28) PATH 'Reference’',

lineitem XMLType PATH 'LinelItems/LinelItem') t,
XMLTable('$1/Lineltem' PASSING t.lineitem AS "1"
COLUMNS lineno NUMBER (10) PATH '@ItemNumber',

description VARCHAR2 (128) PATH 'Description') 1i
WHERE t.reference = 'DAUSTIN-20021009123335811PDT';

REFERENCE LINENO DESCRIPTION
DAUSTIN-20021009123335811PDT 1 Dead Ringers
DAUSTIN-20021009123335811PDT 2 Getrud
DAUSTIN-20021009123335811PDT 3 Branded to Kill

XMLType Operations 4-11



Updating XML Data

SQL Functions that Update XML Data

There are several Oracle SQL functions that you can use to update XML data
incrementally—that is, to replace, insert, or delete XML data without replacing the
entire surrounding XML document. This is also called partial updating. These Oracle
SQL functions are described in the following sections:

= updateXML — Replace XML nodes of any kind. See "UPDATEXML SQL Function"
on page 4-14.

» insertChildXxML —Insert XML element or attribute nodes as children of a given
element node. See "INSERTCHILDXML SQL Function" on page 4-23.

= insertChildxMLbefore —Insert new collection elements immediately before a
given collection element of the same type. See "INSERTCHILDXMLBEFORE SQL
Function" on page 4-25.

s insertChildxMLafter —Insert new collection elements immediately after a
given collection element of the same type. See "INSERTCHILDXMLAFTER SQL
Function" on page 4-26.

s insertXMLbefore —Insert XML nodes of any kind immediately before a given
node (other than an attribute node). See "INSERTXMLBEFORE SQL Function" on
page 4-27.

s insertXMLafter —Insert XML nodes of any kind immediately after a given
node (other than an attribute node). See "INSERTXMLAFTER SQL Function" on
page 4-29.

s appendChildxML - Insert XML nodes of any kind as the last child nodes of a
given element node. See "APPENDCHILDXML SQL Function" on page 4-30.

s deleteXxML — Delete XML nodes of any kind. See "DELETEXML SQL Function"
on page 4-31.

Use functions insertChildXML, insertChildXMLbefore,
insertChildxXMLafter, insertXMLbefore, insertXMLafter, and
appendChildXML to insert XML data. Use function deleteXML to delete XML data.
Use function updateXML to replace XML data.

In particular, do not use function updateXxML to insert or delete XML data by replacing
a parent node in its entirety. That works, but it is less efficient than using one of the
other functions, which perform more localized updates.

These Oracle SQL functions do not, by themselves, change database data — they are all
pure functions, without side effect. Each applies an XPath-expression argument to
input XML data and returns a modified copy of the input XML data. You can then use
that result with SQL DML operator UPDATE to modify database data. This is no
different from the way you use SQL function upper to convert database data to
uppercase: you must use a SQL DML operator such as UPDATE to change the stored
data.

Each of these functions can be used on XML documents that are either schema-based
or non-schema-based. For XML schema-based data, these Oracle SQL functions
perform partial validation on the result, and, where appropriate, argument values are
also checked for compatibility with the XML schema.

4-12 Oracle XML DB Developer's Guide



Updating XML Data

Note: Oracle SQL functions and XMLType methods respect the W3C
XPath recommendation, which states that if an XPath expression
targets no nodes when applied to XML data, then an empty sequence
must be returned. An error must not be raised in this case.

The specific semantics of an Oracle SQL function or XMLType method
that applies an XPath expression to XML data determines what is
returned. For example, SQL/XML function XMLQuery returns NULL if
its XPath-expression argument targets no nodes, and the updating
Oracle SQL functions, such as deleteXML, return the input XML data
unchanged. An error is never raised if no nodes are targeted, but
updating SQL functions can raise an error if an XPath-expression
argument targets inappropriate nodes, such as attribute nodes or text
nodes.

See Also: "Partial Validation" on page 3-32 for more information
about partial validation against an XML schema

Inserting XML Elements using SQL Functions

There are several Oracle SQL functions for inserting XML nodes into (a copy of)
existing XML data. Each can insert nodes at multiple locations that are referenced by
an XPath expression. They differ in the placement of the new nodes and how the target
XML data is referenced.

Function appendChildXML appends nodes to the target elements. That is, for
each target element, it inserts one or more nodes of any kind as the element's last
children.

Function insertChildxML inserts new children (one or more elements of the
same type or a single attribute) under target elements. The position of a new child
element under its parent is not specified. If the target data is XML schema-based,
then the schema can sometimes be used to determine the position. Otherwise, the
position is arbitrary.

Function insertXMLbefore inserts one or more nodes of any kind immediately
before a target node (which is not an attribute node).

Function insertXMLafter inserts a node similarly, but after the target, not
before.

Function insertChildxXMLbefore is similar to insertChildxXML, except that
the inserted node must be an element (not an attribute), and you specify the
position of the new element amonyg its siblings. It is similar to
insertXMLbefore, except that it inserts only collection elements, not arbitrary
elements. The insertion position specifies a successor collection member. The
actual element to be inserted must correspond to the element type for the
collection.

Function insertChildxXMLafter inserts a node similarly, but after the target,
not before.

Though the effect of insertChildXMLbefore (-after) is similar to that of
insertXMLbefore (-after), the target location is expressed differently. For the
former, the target is the parent of the new child. For the latter, the target is the
succeeding (or preceding) sibling. This difference is reflected in the function names
(child).

XMLType Operations 4-13



Updating XML Data

For example, to insert a new LineItem element before the third LineItem element
under element /PurchaseOrder/LineItems, you can use
insertChildxMLbefore, specifying the target parent as
/PurchaseOrder/LineItems and the succeeding sibling as LineItem[3]. Or you
can use insertXMLbefore, specifying the target succeeding sibling as
/PurchaseOrder/LineIltems/LineItem[3].If you use insertChildXML for the
insertion, then you cannot specify the position of the new element in the
collection—the resulting position is indeterminate.

Another difference among these functions is that all of them except
insertXMLbefore, insertXMLafter, and appendChildXML—are optimized for
SQL UPDATE operations on XMLType tables and columns that are stored
object-relationally or as binary XML.

See Also: "Optimization of Oracle SQL Functions that Modify XML
Data" on page 4-20

UPDATEXML SQL Function

Oracle SQL function updateXML replaces XML nodes of any kind. The XML
document that is the target of the update can be schema-based or non-schema-based.

A copy of the input XMLType instance is modified and returned. The original data is
unaffected. You can then use the returned data with SQL operation UPDATE to modify
database data.

Function updateXML has the following parameters (in order):
s target-data (XMLType) - The XML data containing the target node to replace.
= One or more pairs of xpath and replacement parameters:

- xpath (VARCHAR2) — An XPath 1.0 expression that locates the nodes within
target-data to replace. Each targeted node is replaced by replacement.
These can be nodes of any kind. If xpath matches an empty sequence of
nodes then no replacement is done, and target-data is returned unchanged
(and no error is raised).

- replacement (XMLType or VARCHAR2) — The XML data that replaces the
data targeted by xpath. The data type of replacement must correspond to
the data to be replaced. If xpath targets an element node for replacement,
then the data type must be XML Type. If xpath targets an attribute node or a
text node, then it must be VARCHAR?2. For an attribute node, replacement is
only the replacement value of the attribute (for example, 23), not the complete
attribute node including the name (for example, my_attribute="23").

= namespace (VARCHAR2, optional) — The XML namespace for parameter xpath.

Oracle SQL function updateXML can be used to replace existing elements, attributes,
and other nodes with new values. It is not an efficient way to insert new nodes or
delete existing ones. You can perform insertions and deletions with updateXML only
by using it to replace the entire node that is the parent of the node to be inserted or
deleted.

Function updateXML updates only the transient XML instance in memory. Use a SQL
UPDATE statement to update data stored in tables.

Figure 4-3 illustrates the syntax.

4-14 Oracle XML DB Developer's Guide



Updating XML Data

Figure 4-3 UPDATEXML Syntax

X
& ) O
—] UPDATEXNL @{XMLType_instance XPath_string value_expr ) @->

Example 4-10 uses updateXML on the right side of an UPDATE statement to update
the XML document in a table instead of creating a new document. The entire
document is updated, not just the part that is selected.

Example 4-10 Updating XMLTYPE using UPDATE and UPDATEXML

SELECT XMLQuery ('Sp/PurchaseOrder/Actions/Action[1]"' PASSING po.OBJECT VALUE AS "p"
RETURNING CONTENT) action
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING po.OBJECT_VALUE AS "p");

ACTION

<Action>
<User>SVOLLMAN</User>

</Action>

UPDATE purchaseorder po
SET po.OBJECT_VALUE = updateXML (po.OBJECT_VALUE,
' /PurchaseOrder/Actions/Action[1] /User/text ()",
'SKING')
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING po.OBJECT_VALUE AS "p");

SELECT XMLQuery ('S$p/PurchaseOrder/Actions/Action[1l]' PASSING po.OBJECT_VALUE AS "p"
RETURNING CONTENT) action
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING po.OBJECT_VALUE AS "p");

ACTION

<Action>
<User>SKING</User>

</Action>

Example 4-11 updates multiple nodes using Oracle SQL function updateXML.

Example 4-11 Updating Multiple Text Nodes and Attribute Values using UPDATEXML

SELECT XMLCast (XMLQuery ('S$p/PurchaseOrder/Requestor'’
PASSING po.OBJECT _VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30)) name,
XMLQuery (' $p/PurchaseOrder/Lineltems'

PASSING po.OBJECT VALUE AS "p" RETURNING CONTENT) lineitems
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"

PASSING po.OBJECT_VALUE AS "p");

NAME LINEITEMS

Sarah J. Bell <LineItems>
<LineItem ItemNumber="1">
<Description>A Night to Remember</Description>

XMLType Operations 4-15



Updating XML Data

<Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</LineItem>
<LineItem ItemNumber="2">
<Description>The Unbearable Lightness Of Being</Description>
<Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
</LineItem>
<LineItem ItemNumber="3">
<Description>Sisters</Description>
<Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
</LineIltem>
</LineItems>

UPDATE purchaseorder
SET OBJECT_VALUE = updateXML (OBJECT_VALUE,

' /PurchaseOrder/Requestor/text () ', 'Stephen G. King',
' /PurchaseOrder/Lineltems/Lineltem[1]/Part/@Id", '786936150421",
' /PurchaseOrder/Lineltems/LineItem[1] /Description/text()"', 'The Rock',

' /PurchaseOrder/Lineltems/LineItem[3]",
XMLType ('<Lineltem ItemNumber="99">
<Description>Dead Ringers</Description>
<Part Id="715515009249" UnitPrice="39.95" Quantity="2"/>
</Lineltem>'))
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

SELECT XMLCast (XMLQuery (' $p/PurchaseOrder/Requestor’
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30)) name,
XMLQuery (' $p/PurchaseOrder/Lineltems'

PASSING po.OBJECT VALUE AS "p" RETURNING CONTENT) lineitems
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"

PASSING po.OBJECT_VALUE AS "p");

NAME LINEITEMS

Stephen G. King <Lineltems>
<LineItem ItemNumber="1">
<Description>The Rock</Description>
<Part Id="786936150421" UnitPrice="39.95" Quantity="2"/>
</LineItem>
<LineItem ItemNumber="2">
<Description>The Unbearable Lightness Of Being</Description>
<Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
</LineItem>
<LineItem ItemNumber="99">
<Description>Dead Ringers</Description>
<Part Id="715515009249" UnitPrice="39.95" Quantity="2"/>
</LineItem>
</LineIltems>

Example 4-12 uses SQL function updateXML to update selected nodes within a
collection.

Example 4-12 Updating Selected Nodes within a Collection using UPDATEXML

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Requestor’
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30)) name,
XMLQuery (' $p/PurchaseOrder/Lineltems'

PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT) lineitems
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"

PASSING po.OBJECT_VALUE AS "p");

4-16 Oracle XML DB Developer's Guide



Updating XML Data

NAME LINEITEMS
Sarah J. Bell <LineItems>
<Lineltem ItemNumber="1">
<Description>A Night to Remember</Description>
<Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</Lineltem>
<Lineltem ItemNumber="2">
<Description>The Unbearable Lightness Of Being</Description>
<Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
</LineIltem>
<LineIltem ItemNumber="3">
<Description>Sisters</Description>
<Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltem>
</Lineltems>

UPDATE purchaseorder
SET OBJECT_VALUE =
updateXML (OBJECT_VALUE,

' /PurchaseOrder/Requestor/text () ', 'Stephen G. King',
' /PurchaseOrder/Lineltems/Lineltem/Part [@Id="715515009058"]/@Quantity",
25,

' /PurchaseOrder/Lineltems/Lineltem[Description/text () =
"The Unbearable Lightness Of Being"]',
XMLType ('<Lineltem ItemNumber="99">
<Part Id="786936150421" Quantity="5" UnitPrice="29.95"/>
<Description>The Rock</Description>
</Lineltem>'))
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Requestor’
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2(30)) name,
XMLQuery (' $Sp/PurchaseOrder/Lineltems'

PASSING po.OBJECT VALUE AS "p" RETURNING CONTENT) lineitems
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"

PASSING po.OBJECT_VALUE AS "p");

NAME LINEITEMS
Stephen G. King <LineItems>
<Lineltem ItemNumber="1">
<Description>A Night to Remember</Description>
<Part Id="715515009058" UnitPrice="39.95" Quantity="25"/>
</Lineltem>
<LineIltem ItemNumber="99">
<Part Id="786936150421" Quantity="5" UnitPrice="29.95"/>
<Description>The Rock</Description>
</Lineltem>
<Lineltem ItemNumber="3">
<Description>Sisters</Description>
<Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
</LineItem>
</Lineltems>

XMLType Operations 4-17



Updating XML Data

UPDATEXML and NULL Values

s If you update an XML element to NULL, the attributes and children of the element
are removed, and the element becomes empty. The type and namespace properties
of the element are retained. See Example 4-13.

» If you update an attribute value to NULL, the value appears as the empty string. See
Example 4-13.

= If you update the fext node of an element to NULL, the content (text) of the element
is removed. The element itself remains, but it is empty. See Example 4-14.

Example 4-13 updates all of the following to NULL:

s The Description element and the Quantity attribute of the LineItem element
whose Part element has attribute Id value 715515009058.

s The LineItem element whose Description element has the content (text) "The
Unbearable Lightness Of Being".

Example 4-13 NULL Updates with UPDATEXML - Element and Attribute

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Requestor’
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30)) name,
XMLQuery (' $p/PurchaseOrder/Lineltems'

PASSING po.OBJECT VALUE AS "p" RETURNING CONTENT) lineitems
FROM purchaseorder po
WHERE XMLExists ('S$Sp/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"

PASSING po.OBJECT_VALUE AS "p");

NAME LINEITEMS
Sarah J. Bell <LineItems>
<Lineltem ItemNumber="1">
<Description>A Night to Remember</Description>
<Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</LineIltem>
<Lineltem ItemNumber="2">
<Description>The Unbearable Lightness Of Being</Description>
<Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
</Lineltem>
<Lineltem ItemNumber="3">
<Description>Sisters</Description>
<Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltem>
</LinelItems>

UPDATE purchaseorder
SET OBJECT _VALUE =
updateXML (
OBJECT_VALUE,
' /PurchaseOrder/Lineltems/Lineltem[Part/@Id="715515009058"] /Description', NULL,
' /PurchaseOrder/Lineltems/Lineltem/Part [@Id="715515009058"]/@Quantity"', NULL,
' /PurchaseOrder/Lineltems/Lineltem[Description/text ()=
"The Unbearable Lightness Of Being"]', NULL)
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Requestor’

PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30)) name,

4-18 Oracle XML DB Developer's Guide



Updating XML Data

XMLQuery (' $Sp/PurchaseOrder/Lineltems'
PASSING po.OBJECT VALUE AS "p" RETURNING CONTENT) lineitems
FROM purchaseorder po
WHERE XMLExists('$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING po.OBJECT_VALUE AS "p");

NAME LINEITEMS
Sarah J. Bell <Lineltems>
<Lineltem ItemNumber="1">
<Description/>
<Part Id="715515009058" UnitPrice="39.95" Quantity=""/>
</Lineltem>
<LineItem/>
<Lineltem ItemNumber="3">
<Description>Sisters</Description>
<Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltem>
</Lineltems>

Example 4-14 updates the text node of a Part element whose Description attribute
has value "A Night to Remember"to NULL. The XML data for this example
corresponds to a different, revised purchase-order XML schema — see "Scenario for
Copy-Based Evolution" on page 10-2. In that XML schema, Description is an
attribute of the Part element, not a sibling element.

Example 4-14 NULL Updates with UPDATEXML — Text Node

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Lineltems/Lineltem/Part[@Description="A Night to Remember"]'
PASSING po.OBJECT _VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (128)) part
FROM purchaseorder po
WHERE XMLExists ('$p/PurchaseOrder[@Reference="SBELL-2003030912333601PDT"]"
PASSING po.OBJECT_VALUE AS "p");

PART

<Part Description="A Night to Remember" UnitCost="39.95">715515009058</Part>

UPDATE purchaseorder
SET OBJECT_VALUE =
updateXML (OBJECT_VALUE,
' /PurchaseOrder/Lineltems/Lineltem/Part [@Description="A Night to Remember"]/text()', NULL)
WHERE XMLExists ('S$p/PurchaseOrder [@Reference="SBELL-2003030912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/Lineltems/Lineltem/Part[@Description="A Night to Remember"]'
PASSING po.OBJECT _VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (128)) part
FROM purchaseorder po
WHERE XMLExists('$p/PurchaseOrder[@Reference="SBELL-2003030912333601PDT"]"
PASSING po.OBJECT_VALUE AS "p");

PART

<Part Description="A Night to Remember" UnitCost="39.95"/>

See Also: Example 3-36, "Updating XML Content using
UPDATEXML"

XMLType Operations 4-19



Updating XML Data

Updating the Same XML Node More Than Once

You can update the same XML node more than once in an updateXML expression. For
example, you can update both /EMP [EMPNO=217] and

/EMP [ EMPNAME="Jane" ] /EMPNO, where the first XPath identifies the EMPNO node
containing it as well. The order of updates is determined by the order of the XPath
expressions in left-to-right order. Each successive XPath works on the result of the
previous XPath update.

Preserving DOM Fidelity When using UPDATEXML

Here are some guidelines for preserving DOM fidelity when using Oracle SQL
function updateXML:

When DOM Fidelity is Preserved When you update an element to NULL, you make that
element appear empty in its parent, such as in <myElem/>.

When you update a text node inside an element to NULL, you remove that text node
from the element.

When you update an attribute node to NULL, you make the value of the attribute
become the empty string, for example, myAttr="".

When DOM Fidelity is Not Preserved When you update a complexType element to NULL,
you make the element appear empty in its parent, for example, <myElem/>.

When you update a SQL-inlined simpleType element to NULL, you make the element
disappear from its parent.

When you update a text node to NULL, you are doing the same thing as setting the
parent simpleType element to NULL. Furthermore, text nodes can appear only inside
simpleType elements when DOM fidelity is not preserved, since there is no
positional descriptor with which to store mixed content.

When you update an attribute node to NULL, you remove the attribute from the
element.

Determining Whether DOM Fidelity is Preserved You can determine whether or not DOM
fidelity is preserved for particular parts of a given XMLType in a given XML schema
by querying the schema metadata for attribute maintainDOM.

See Also:

= "Querying a Registered XML Schema to Obtain Annotations"
on page 7-43 for an example of querying a schema to retrieve
DOM fidelity values

= "DOM Fidelity" on page 7-16

Optimization of Oracle SQL Functions that Modify XML Data

In most cases, the Oracle SQL functions that modify XML data materialize a copy of
the entire input XML document in memory, then update the copy. However, functions
updateXML, insertChildXML, insertChildXMLbefore,
insertChildXMLafter, and deleteXML—that is, all except insertXMLbefore,
insertXMLafter, and appendChildXML—are optimized for SQL UPDATE
operations on XMLType tables and columns that are stored object-relationally or as
binary XML.

For structured storage, if particular conditions are met, then the function call can be
rewritten to update the object-relational columns directly with the values. For binary

4-20 Oracle XML DB Developer's Guide



Updating XML Data

XML storage, data preceding the targeted update is not modified, and, if SecureFile
LOBs are used (the default behavior), then sliding inserts are used to update only the
portions of the data that need changing.

See Also:

s "Updating XML Schema-Based and Non-Schema-Based XML
Documents" on page 3-57 for more about piecewise updating

s Chapter 3, "Using Oracle XML DB" and Chapter 8, "XPath Rewrite
for Structured Storage" for information about the conditions for
XPath rewrite

s '"Performance Tuning for XQuery" on page 5-29

As an example with object-relational storage, the XPath argument to updateXML in
Example 4-15 is processed by Oracle XML DB and rewritten into equivalent
object-relational SQL code, as illustrated in Example 4-16.

Example 4-15 XPath Expressions in UPDATEXML Expression

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/User'
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30)
FROM purchaseorder po
WHERE XMLExists('$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING po.OBJECT_VALUE AS "p");

XMLCAST (XMLQUERY ( ' $P/PURCHASEO

UPDATE purchaseorder
SET OBJECT_VALUE = updateXML (OBJECT_VALUE, '/PurchaseOrder/User/text()', 'SVOLLMAN')
WHERE XMLExists('Sp/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE AS "p");

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/User'
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30)
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING po.OBJECT_VALUE AS "p");

XMLCAST (XMLQUERY ( ' $P/PURCHASEO

Example 4-16 Object Relational Equivalent of UPDATEXML Expression

SELECT XMLCast (XMLQuery (' $p/PurchaseOrder/User"
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30))
FROM purchaseorder po
WHERE XMLExists('$p/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING po.OBJECT_VALUE AS "p");

XMLCAST (XMLQUERY ( ' $P/PURCHASEO

XMLType Operations 4-21



Updating XML Data

UPDATE purchaseorder p
SET p."XMLDATA"."USERID" = 'SVOLLMAN'
WHERE p."XMLDATA"."REFERENCE" = 'SBELL-2002100912333601PDT';

SELECT XMLCast (XMLQuery ('$p/PurchaseOrder/User'
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (30))
FROM purchaseorder po
WHERE XMLExists ('S$Sp/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING po.OBJECT_VALUE AS "p");

XMLCAST (XMLQUERY (' $P/PURCHASEO

Note: The use of XMLDATA for DML is shown here only as an
illustration of internal Oracle XML DB behavior. Do not use XMLDATA
yourself for DML operations. You can use XMLDATA directly only for
DDL operations, never for DML operations.

More generally, in your code, do not rely on the current mapping
between the XML Schema object model and the SQL object model.
This Oracle XML DB implementation mapping might change in the
future.

Creating XML Views using Oracle SQL Functions that Modify XML Data

You can use the Oracle SQL functions that modify XML data (updateXML,
insertChildXML, insertChildXMLbefore, insertChildXMLafter,
insertXMLbefore, insertXMLafter, appendChildXML, and deleteXML) to
create new views of XML data.

Example 4-17 creates a view of table purchaseorder using Oracle SQL function
updateXML.

Example 4-17 Creating a View using UPDATEXML

CREATE OR REPLACE VIEW purchaseorder_summary OF XMLType AS
SELECT updateXML (OBJECT VALUE,
' /PurchaseOrder/Actions', NULL,
' /PurchaseOrder/ShippingInstructions', NULL,
' /PurchaseOrder/Lineltems', NULL) AS XML
FROM purchaseorder p;

SELECT OBJECT_VALUE FROM purchaseorder_summary
WHERE XMLExists ('S$p/PurchaseOrder [Reference="DAUSTIN-20021009123335811PDT"]"
PASSING OBJECT_VALUE AS "p");

OBJECT_VALUE
<PurchaseOrder
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1 :noNamespaceSchemal.ocation=
"http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">
<Reference>DAUSTIN-20021009123335811PDT</Reference>
<Actions/>
<Reject/>
<Requestor>David L. Austin</Requestor>

4-22 Oracle XML DB Developer's Guide



Updating XML Data

<User>DAUSTIN</User>
<CostCenter>S30</CostCenter>
<ShippingInstructions/>
<SpecialInstructions>Courier</SpecialInstructions>
<Lineltems/>

</PurchaseOrder>

INSERTCHILDXML SQL Function

Oracle SQL function insertChildxML inserts new children (one or more elements of
the same type or a single attribute) under parent XML elements. The XML document
that is the target of the insertion can be schema-based or non-schema-based.

A copy of the input XMLType instance is modified and returned. The original data is
unaffected. You can then use the returned data with SQL operation UPDATE to modify
database data.

Function insertChildXML has the following parameters (in order):
s target-data (XMLType)— The XML data containing the target parent element.

m parent-xpath (VARCHAR2) - An XPath 1.0 expression that locates the parent
elements within target-data. The child-data is inserted under each parent
element.

If parent-xpath matches an empty sequence of element nodes, then no insertion
is done, and target-data is returned unchanged (no error is raised). If
parent-xpath does not match a sequence of element nodes (in particular, if
parent-xpath matches one or more attribute or text nodes), then an error is
raised.

s child-name (VARCHAR?2) — The name of the child elements or attribute to insert.
An attribute name is distinguished from an element name by having an at-sign (@)
prefix as part of child-name, for example, @my_attribute versus my_
element. (The at-sign is not part of the attribute name, but serves in the argument
to indicate that chiId-name refers to an attribute.)

s child-data (XMLType or VARCHAR?2) — The child XML data to insert:

— If one or more elements are being inserted, then this is of data type XMLType,
and it contains element nodes. Each of the top-level element nodes in
child-data must have the same name (tag) as child-name (or else an error
is raised).

- If an attribute is being inserted, then this is of data type VARCHAR2, and it
represents the (scalar) attribute value. If an attribute of the same name already
exists at the insertion location, then an error is raised.

= namespace (VARCHAR?2, optional) — The XML namespace for parameters
parent-xpathand child-data.

XML data child-datais inserted as one or more child elements, or a single child
attribute, under each of the parent elements located at parent-xpath.

In order of decreasing precedence, function insertChildxML has the following
behavior for NULL arguments:

s If child-nameis NULL, then an error is raised.
s If target-data or parent-xpath is NULL, then NULL is returned.

s If child-datais NULL, then:

XMLType Operations 4-23



Updating XML Data

— If child-name names an element, then no insertion is done, and
target-data is returned unchanged.

- If child-name names an attribute, then an empty attribute value is inserted,
for example, my_attribute = "".

Figure 4-4 shows the syntax.

Figure 4-4 INSERTCHILDXML Syntax

INSERTCHILDXML
O
—>®{XMLType_instance}O{XPath_string)»@{child_expr)»@—(value_expr) @

If target-data is XML schema-based, then the schema is consulted to determine the
insertion positions. For example, if the schema constrains child elements named
child-name to be the first child elements of a parent -xpath, then the insertion
takes this into account. Similarly, if the chiId-name or child-data argument is
inappropriate for an associated schema, then an error is raised.

If the parent element does not yet have a child corresponding in name and kind to
child-name (and if such a child is permitted by the associated XML schema, if any),
then child-data is inserted as new child elements, or a new attribute value, named
child-name.

If the parent element already has a child attribute named child-name (without the
at-sign), then an error is raised. If the parent element already has a child element named
child-name (and if more than one child element is permitted by the associated XML
schema, if any), then child-data is inserted so that its elements become child
elements named child-name, but their positions in the sequence of children are
unpredictable.

If you need to insert elements into an existing, non-empty collection of child elements,
and the order is important to you, then use SQL /XML function appendChildXML or
insertXMLbefore.

Example 4-18 shows how to use a SQL UPDATE statement and Oracle SQL function
insertChildXML to insert a new LineItem element as a child of element
LineItems.

Example 4-18 Inserting a Lineltem Element into a Lineltems Element

SELECT XMLQuery ('Sp/PurchaseOrder/Lineltems/Lineltem[@ItemNumber=222]"
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING po.OBJECT_VALUE AS "p");

XMLQUERY (' $P/PURCHASEORDER/LINEITEMS/LINEITEM[@ITEMNUMBER=222]"

1 row selected.

UPDATE purchaseorder
SET OBJECT_VALUE =
insertChildXML (OBJECT VALUE,
' /PurchaseOrder/Lineltems"',
'LineItem',

4-24 Oracle XML DB Developer's Guide



Updating XML Data

XMLType ('<Lineltem ItemNumber="222">

<Description>The Harder They Come</Description>

<Part Id="953562951413"
UnitPrice="22.95"
Quantity="1"/>

</Lineltem>"'))
WHERE XMLExists ('S$p/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING OBJECT_VALUE AS "p");

SELECT XMLQuery ('S$p/PurchaseOrder/Lineltems/Lineltem[@ItemNumber=222]"
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING po.OBJECT_VALUE AS "p");

XMLQUERY (' $P/PURCHASEORDER/LINEITEMS/LINEITEM[@ITEMNUMBER=222]"

<Lineltem ItemNumber="222">

<Description>The Harder They Come</Description>

<Part Id="953562951413" UnitPrice="22.95" Quantity="1"/>
</Lineltem>

1 row selected.

If the XML data to be updated is XML schema-based and it refers to a namespace, then
the data to be inserted must also refer to the same namespace. Otherwise, an error is
raised because the inserted data does not conform to the XML schema.

Example 4-19 is the same as Example 4-18, except that the LineItem element to be
inserted refers to a namespace. This assumes that the relevant XML schema requires a
namespace for this element.

Example 4-19 Inserting an Element that Uses a Namespace

UPDATE purchaseorder
SET OBJECT_VALUE =
insertChildXML (OBJECT_VALUE,

' /PurchaseOrder/Lineltems"',

'LineItem',

XMLType ('<Lineltem xmlns="films.xsd" ItemNumber="222">
<Description>The Harder They Come</Description>
<Part Id="953562951413"

UnitPrice="22.95"
Quantity="1"/>
</Lineltem>"))
WHERE XMLExists ('S$p/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING OBJECT_VALUE AS "p");

Note that this use of namespaces is different from the use of a namespace argument to
function insertChildXML. Namespaces supplied in that optional argument apply
only to the XPath argument, not to the content to be inserted.

INSERTCHILDXMLBEFORE SQL Function

Oracle SQL function insertChildxMLbefore inserts one or more collection
elements as children of target parent elements. The insertion for each target occurs
immediately before a specified existing collection element. The existing XML
document that is the target of the insertion can be schema-based or non-schema-based.

XMLType Operations 4-25



Updating XML Data

A copy of the input XMLType instance is modified and returned. The original data is
unaffected. You can then use the returned data with SQL operation UPDATE to modify
database data.

Function insertChildxXMLbefore has the following parameters (in order):
s target-data (XMLType) - The XML data that is the target of the insertion.

m parent-xpath (VARCHAR2) - An XPath 1.0 expression that locates the parent
elements within target-data. The child-data is inserted under each parent
element.

If parent-xpath matches an empty sequence of element nodes, then no insertion
is done, and target-data is returned unchanged (no error is raised). If
parent-xpath does not match a sequence of element nodes (in particular, if
parent-xpath matches one or more attribute or text nodes), then an error is
raised.

s child-xpath (VARCHAR2) — A relative XPath 1.0 expression that locates the
existing child that will become the successor of the inserted child-data. It must
name a child element of the element indicated by parent-xpath, and it can
include a predicate.

s child-data (XMLType) — The child element XML data to insert. This is of data
type XMLType, and it contains element nodes. Each of the top-level element nodes
in child-data must have the same data type as the element indicated by
child-xpath (or else an error is raised).

= namespace (optional, VARCHAR2) — The namespace for parameters
parent-xpath, child-xpath, and child-data.

XML data child-data is inserted as one or more child elements under each of the
parent elements located at parent-xpath.

In order of decreasing precedence, function insertChildxMLbefore has the
following behavior for NULL arguments:

s If child-nameis NULL, then an error is raised.
s If target-dataor parent-xpath is NULL, then NULL is returned.

s If child-datais NULL, then no insertion is done, and target-data is returned
unchanged.

Figure 4-5 shows the syntax.

Figure 4-5 INSERTCHILDXMLBEFORE Syntax

—>| INSERTCHILDXMLBEFORE |->

O )
—>®{XMLType_instance}@{XPath_String)@{Child_eXpDO{Va|Ue_eXPr) @

INSERTCHILDXMLAFTER SQL Function

Oracle SQL function insertChildxMLaf ter inserts one or more collection elements
as children of target parent elements. The insertion for each target occurs immediately
after a specified existing collection element. The existing XML document that is the
target of the insertion can be schema-based or non-schema-based.

4-26 Oracle XML DB Developer's Guide



Updating XML Data

A copy of the input XMLType instance is modified and returned. The original data is
unaffected. You can then use the returned data with SQL operation UPDATE to modify
database data.

Function insertChildxXMLafter has the following parameters (in order):

target-data (XMLType) — The XML data that is the target of the insertion.

parent-xpath (VARCHAR2) — An XPath 1.0 expression that locates the parent
elements within target-data. The child-data is inserted under each parent
element.

If parent-xpath matches an empty sequence of element nodes, then no insertion
is done, and target-data is returned unchanged (no error is raised). If
parent-xpath does not match a sequence of element nodes (in particular, if
parent-xpath matches one or more attribute or text nodes), then an error is
raised.

child-xpath (VARCHAR2) — A relative XPath 1.0 expression that locates the
existing child that will become the predecessor of the inserted child-data. It
must name a child element of the element indicated by parent-xpath, and it can
include a predicate.

child-data (XMLType) — The child element XML data to insert. This is of data
type XMLType, and it contains element nodes. Each of the top-level element nodes
in child-data must have the same data type as the element indicated by
child-xpath (or else an error is raised).

namespace (optional, VARCHAR2) — The namespace for parameters
parent-xpath, child-xpath,and child-data.

XML data child-data is inserted as one or more child elements under each of the
parent elements located at parent-xpath.

In order of decreasing precedence, function insertChildxXMLafter has the
following behavior for NULL arguments:

If child-nameis NULL, then an error is raised.
If target-data or parent-xpath is NULL, then NULL is returned.

If child-data is NULL, then no insertion is done, and target-data is returned
unchanged.

Figure 4-6 shows the syntax.

Figure 4-6 INSERTCHILDXMLAFTER Syntax

—>| INSERTCHILDXMLAFTER |->

0
—>®{XMLType_instance}@{XPath_String)@{child_expr)@@ @

INSERTXMLBEFORE SQL Function

Oracle SQL function insertXMLbefore inserts one or more nodes of any kind
immediately before a target node that is not an attribute node. The XML document
that is the target of the insertion can be schema-based or non-schema-based.

XMLType Operations 4-27



Updating XML Data

A copy of the input XMLType instance is modified and returned. The original data is
unaffected. You can then use the returned data with SQL operation UPDATE to modify
database data.

Function insertXMLbefore has the following parameters (in order):
s target-data (XMLType) - The XML data that is the target of the insertion.

m successor-xpath (VARCHAR2)— An XPath 1.0 expression that locates zero or
more nodes in target-data of any kind except attribute nodes. XML-data is
inserted immediately before each of these nodes. Thus, the nodes in XML-data
become preceding siblings of each of the successor-xpathnodes.

If successor-xpath matches an empty sequence of nodes, then no insertion is
done, and target-data is returned unchanged (no error is raised). If
successor-xpath does not match a sequence of nodes that are not attribute
nodes, then an error is raised.

»  XML-data (XMLType)— The XML data to be inserted: one or more nodes of any
kind. The order of the nodes is preserved after the insertion.

= namespace (optional, VARCHAR2) — The namespace for parameter
successor-xpath.

The XML-data nodes are inserted immediately before each of the non-attribute nodes
located at successor-xpath.

Function insertXMLbefore has the following behavior for NULL arguments:
s If target-data or parent-xpath is NULL, then NULL is returned.

m  Otherwise, if child-data is NULL, then no insertion is done, and target-data
is returned unchanged.
Figure 4-7 shows the syntax.

Figure 4-7 INSERTXMLBEFORE Syntax

O )
—J| INSERTXMLBEFORE P@»CXMLType_instance}s@{XPath_string)s@{value_expr) @

Example 4-20 Inserting a Lineltem Element Before the First Lineltem ELement

SELECT XMLQuery ('Sp/PurchaseOrder/Lineltems/Lineltem[1]"'
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING po.OBJECT_VALUE AS "p");

XMLQUERY (' $P/PURCHASEORDER/LINEITEMS/LINEITEM[1] ' PASSINGPO.OBJECT
<Lineltem ItemNumber="1">

<Description>Salesman</Description>

<Part Id="37429158920" UnitPrice="39.95" Quantity="2"/>
</Lineltem>

UPDATE purchaseorder
SET OBJECT _VALUE =
insertXMLbefore (OBJECT_VALUE,
' /PurchaseOrder/Lineltems/LineItem[1]",
XMLType ('<LineItem ItemNumber="314">
<Description>Brazil</Description>

4-28 Oracle XML DB Developer's Guide



Updating XML Data

<Part Id="314159265359"
UnitPrice="69.95"
Quantity="2"/>
</LineItem>'))
WHERE XMLExists ('S$p/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING OBJECT_VALUE AS "p");

SELECT XMLQuery ('Sp/PurchaseOrder/Lineltems/Lineltem[position() <= 2]'
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING po.OBJECT_VALUE AS "p");

XMLQUERY (' $P/PURCHASEORDER/LINEITEMS/LINEITEM[POSITION()<=2]"'PASSINGPO.OBJECT
<LineItem ItemNumber="314">
<Description>Brazil</Description>
<Part Id="314159265359" UnitPrice="69.95" Quantity="2"/>
</LineItem>
<Lineltem ItemNumber="1">
<Description>Salesman</Description>
<Part Id="37429158920" UnitPrice="39.95" Quantity="2"/>
</Lineltem>

Note: Queries that use Oracle SQL function insertXMLbefore are
not optimized. For this reason, Oracle recommends that you use
function insertChildXML, insertChildXMLbefore, or
insertChildxMLafter instead. See "Performance Tuning for
XQuery" on page 5-29.

INSERTXMLAFTER SQL Function

Oracle SQL function insertXMLafter inserts one or more nodes of any kind
immediately after a target node that is not an attribute node. The XML document that
is the target of the insertion can be schema-based or non-schema-based. It is thus
similar to insertXMLbefore, but it inserts after, not before, the target node.

A copy of the input XMLType instance is modified and returned. The original data is
unaffected. You can then use the returned data with SQL operation UPDATE to modify
database data.

Function insertXMLafter has the following parameters (in order):
» target-data (XMLType) - The XML data that is the target of the insertion.

» successor-xpath (VARCHAR2) — An XPath 1.0 expression that locates zero or
more nodes in target-data of any kind except attribute nodes. XML -data is
inserted immediately after each of these nodes. Thus, the nodes in XML-data
become succeeding siblings of each of the successor-xpathnodes.

If successor-xpath matches an empty sequence of nodes, then no insertion is
done, and target-data is returned unchanged (no error is raised). If
successor-xpath does not match a sequence of nodes that are not attribute
nodes, then an error is raised.

s XML-data (XMLType) — The XML data to be inserted: one or more nodes of any
kind. The order of the nodes is preserved after the insertion.

= namespace (optional, VARCHAR2) — The namespace for parameter
successor-xpath.

XMLType Operations 4-29



Updating XML Data

The XML-data nodes are inserted immediately after each of the non-attribute nodes
located at successor-xpath.

Function insertXMLafter has the following behavior for NULL arguments:
s If target-data or parent-xpath is NULL, then NULL is returned.

s Otherwise, if child-data is NULL, then no insertion is done, and target-data
is returned unchanged.

Figure 4-8 shows the syntax.

Figure 4-8 INSERTXMLAFTER Syntax

O
— INSERTXMLAFTER F@»{XMLType_instance)a@{XPalh_string)a@@ @

Note: Queries that use Oracle SQL function insertXMLafter are
not optimized. For this reason, Oracle recommends that you use
function insertChildxXML, insertChildXMLbefore, or
insertChildxMLafter instead. See "Performance Tuning for
XQuery" on page 5-29.

APPENDCHILDXML SQL Function

Oracle SQL function appendChildXML inserts one or more nodes of any kind as the
last children of a given element node. The XML document that is the target of the
insertion can be schema-based or non-schema-based.

A copy of the input XMLType instance is modified and returned. The original data is
unaffected. You can then use the returned data with SQL operation UPDATE to modify
database data.

Function appendChildxML has the following parameters (in order):
m target-data (XMLType)- The XML data containing the target parent element.

» parent-xpath (VARCHAR2) — An XPath 1.0 expression that locates zero or more
element nodes in target-data that are the targets of the insertion operation. The
child-datais inserted as the last child or children of each of these parent
elements.

If parent-xpath matches an empty sequence of element nodes, then no insertion
is done, and target-data is returned unchanged (no error is raised). If
parent-xpath does not match a sequence of element nodes (in particular, if
parent-xpath matches one or more attribute or text nodes), then an error is
raised.

s child-data (XMLType) — Child data to be inserted: one or more nodes of any
kind. The order of the nodes is preserved after the insertion.

= namespace (optional, VARCHAR2) — The namespace for parameter
parent-xpath.

XML data child-data is inserted as the last child or children of each of the element
nodes indicated by parent-xpath.

Function appendChildXML has the following behavior for NULL arguments:

s If target-data or parent-xpathis NULL, then NULL is returned.

4-30 Oracle XML DB Developer's Guide



Updating XML Data

s Otherwise, if child-data is NULL, then no insertion is done, and target-data
is returned unchanged.

Figure 4-9 shows the syntax.

Figure 4-9 APPENDCHILDXML Syntax

O
—{ APPENDCHILDXML |—>®{XMLType_instance)—)O-)CXPath_string)@{value_expr) @e

Example 4-21 Inserting a Date Element as the Last Child of an Action Element

SELECT XMLQuery ('Sp/PurchaseOrder/Actions/Action[1]"’
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING po.OBJECT_VALUE AS "p");

XMLQUERY (' $P/PURCHASEORDER/ACTIONS/ACTION[1] ' PASSINGPO.OBJECT_VALUE
<Action>

<User>KPARTNER</User>
</Action>

UPDATE purchaseorder
SET OBJECT _VALUE =
appendChildxML (OBJECT_VALUE,
'PurchaseOrder/Actions/Action[1]"',
XMLType ('<Date>2002-11-04</Date>"'))
WHERE XMLExists('S$Sp/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING OBJECT_VALUE AS "p");

SELECT XMLQuery ('Sp/PurchaseOrder/Actions/Action[1]"’
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder po
WHERE XMLExists('S$Sp/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING po.OBJECT_VALUE AS "p");

XMLQUERY (' $P/PURCHASEORDER/ACTIONS/ACTION[1] ' PASSINGPO.OBJECT_VALUE
<Action>

<User>KPARTNER</User>

<Date>2002-11-04</Date>
</Action>

Note: Queries that use Oracle SQL function appendChildxML are
not optimized. For this reason, Oracle recommends that you use
function insertChildXML, insertChildXMLbefore, or
insertChildxMLafter instead. See "Performance Tuning for
XQuery" on page 5-29.

DELETEXML SQL Function

Oracle SQL function deleteXML deletes XML nodes of any kind. The XML document
that is the target of the deletion can be schema-based or non-schema-based.

XMLType Operations 4-31



Updating XML Data

A copy of the input XMLType instance is modified and returned. The original data is
unaffected. You can then use the returned data with SQL operation UPDATE to modify
database data.

Function deleteXML has the following parameters (in order):

» target-data (XMLType) - The XML data containing the target nodes (to be
deleted).

s  xpath (VARCHAR2) — An XPath 1.0 expression that locates zero or more nodes in
target-data that are the targets of the deletion operation. Each of these nodes is
deleted.

If xpath matches an empty sequence of nodes, then no deletion is done, and
target-data is returned unchanged (no error is raised). If xpath matches the
top-level element node, then an error is raised.

= namespace (optional, VARCHAR2) — The namespace for parameter xpath.

The XML nodes located at xpath are deleted from target-data. Function
deleteXML returns NULL if target-data or xpath is NULL.
Figure 4-10 shows the syntax.

Figure 4-10 DELETEXML Syntax

O
—{ DELETEXML @{XMLType_instance}@{xpath_string) @

Example 4-22 Deleting Lineltem Element Number 222

SELECT XMLQuery ('Sp/PurchaseOrder/Lineltems/Lineltem[@ItemNumber=222]"
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING po.OBJECT_VALUE AS "p");

XMLQUERY (' $P/PURCHASEORDER/LINEITEMS/LINEITEM [@ITEMNUMBER=222] ' PASSINGPO
<Lineltem ItemNumber="222">

<Description>The Harder They Come</Description>

<Part Id="953562951413" UnitPrice="22.95" Quantity="1"/>
</Lineltem>

UPDATE purchaseorder
SET OBJECT VALUE =
deleteXML (OBJECT_VALUE,
' /PurchaseOrder/Lineltems/LineIltem[@ItemNumber="222"1")
WHERE XMLExists('S$Sp/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING OBJECT_VALUE AS "p");

SELECT XMLQuery ('Sp/PurchaseOrder/Lineltems/Lineltem[@ItemNumber=222]"
PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder po
WHERE XMLExists ('S$p/PurchaseOrder [Reference="AMCEWEN-20021009123336171PDT"]"
PASSING po.OBJECT_VALUE AS "p");

XMLQUERY ( ' $P/PURCHASEORDER/LINEITEMS/LINEITEM[@ITEMNUMBER=222] ' PASSINGPO

1 row selected.

4-32 Oracle XML DB Developer's Guide



Updating XML Data

XMLType Operations 4-33



Updating XML Data

4-34 Oracle XML DB Developer's Guide



O

Using XQuery with Oracle XML DB

This chapter describes how to use the XQuery language with Oracle XML DB. It covers
Oracle XML DB support for the language, including SQL /XML functions XMLQuery
and XMLTable and the SQL*Plus XQUERY command.

This chapter contains these topics:

s Overview of XQuery in Oracle XML DB

s Overview of the XQuery Language

= SQL/XML Functions XMLQUERY and XMLTABLE
s When To Use XQuery

»  Predefined Namespaces and Prefixes

s URI Scheme oradb: Querying Table or View Data with XQuery
s Oracle XQuery Extension Functions

= XMLQUERY and XMLTABLE Examples

s Performance Tuning for XQuery

= XQuery Static Type-Checking in Oracle XML DB

= SQL*Plus XQUERY Command

s Using XQuery with PL/SQL, JDBC, and ODP.NET
s Oracle XML DB Support for XQuery

Overview of XQuery in Oracle XML DB

Oracle XML DB support for the XQuery language is provided through a native
implementation of SQL /XML functions XMLQuery and XMLTable. As a convenience,
SQL*Plus command XQUERY is also provided, which lets you enter XQuery
expressions directly—in effect, this command turns SQL*Plus into an XQuery
command-line interpreter.

Oracle XML DB compiles XQuery expressions that are passed as arguments to

SQL /XML functions XMLQuery, XMLTable, XMLExists, and XMLCast. This
compilation produces SQL query blocks and operator trees that use SQL/XML
functions and XPath functions. A SQL statement that includes XMLQuery, XMLTable,
XMLExists, or XMLCast is compiled and optimized as a whole, leveraging both
relational database and XQuery-specific optimization technologies. Depending on the
XML storage and indexing methods used, XPath functions can be further optimized.
The resulting optimized operator tree is executed in a streaming fashion.

Using XQuery with Oracle XML DB 5-1



Overview of the XQuery Language

See Also:
s SQL/XML Functions XMLQUERY and XMLTABLE and SQL*Plus
XQUERY Command

s Oracle XQuery Extension Functions for Oracle-specific XQuery
functions that extend the language

s Oracle XML DB Support for XQuery for details on Oracle
XML DB support for XQuery

Overview of the XQuery Language

Oracle XML DB supports the latest version of the XQuery language specification, W3C
XQuery 1.0 Recommendation. This section presents a brief overview of the language.
For more information, consult a recent book on the language or refer to the standards
documents that define it, which are available at http: //www.w3c.org.

Functional Language Based on Sequences

XQuery 1.0 is the W3C language designed for querying XML data. It is similar to SQL
in many ways, but just as SQL is designed for querying structured, relational data,
XQuery is designed especially for querying semi-structured, XML data from a variety
of data sources. You can use XQuery to query XML data wherever it is found, whether
it is stored in database tables, available through Web Services, or otherwise created on
the fly. In addition to querying XML data, XQuery can be used to construct XML data.
In this regard, XQuery can serve as an alternative or a complement to both XSLT and
the other SQL /XML publishing functions, such as XMLElement.

XQuery builds on the Post-Schema-Validation Infoset (PSVI) data model, which unites
the XML Information Set (Infoset) data model and the XML Schema type system.
XQuery defines a new data model based on sequences: the result of each XQuery
expression is a sequence. XQuery is all about manipulating sequences. This makes
XQuery similar to a set-manipulation language, except that sequences are ordered and
can contain duplicate items. XQuery sequences differ from the sequences in some
other languages in that nested XQuery sequences are always flattened in their effect.

In many cases, sequences can be treated as unordered, to maximize optimization —
where this is available, it is under your control. This unordered mode can be applied
to join order in the treatment of nested iterations (for), and it can be applied to the
treatment of XPath expressions (for example, in /a /b, the matching b elements can be
processed without regard to document order).

An XQuery sequence consists of zero or more items, which can be either atomic
(scalar) values or XML nodes. Items are typed using a rich type system that is based
upon the types of XML Schema. This type system is a major change from that of XPath
1.0, which is limited to simple scalar types such as Boolean, number, and string.

XQuery is a functional language. As such, it consists of a set of possible expressions that
are evaluated and return values (which, for XQuery, are sequences). As a functional
language, XQuery is also referentially transparent, generally: the same expression
evaluated in the same context returns the same value.

Exceptions to this desirable mathematical property include the following:

= XQuery expressions that derive their value from interaction with the external
environment. For example, an expression such as fn: current-time(...) or
fn:doc (.. .) doesnotnecessarily always return the same value, since it depends

5-2 Oracle XML DB Developer's Guide



Overview of the XQuery Language

on external conditions that can change (the time changes; the content of the target
document might change).

In some cases, like that of £n:doc, XQuery is defined to be referentially
transparent within the execution of a single query: within a query, each invocation
of fn:doc with the same argument results in the same document.

XQuery expressions that are defined to be dependent on the particular XQuery
language implementation. The result of evaluating such expressions might vary
between implementations. Function fn:doc is an example of a function that is
essentially implementation-defined.

Referential transparency applies also to XQuery variables: the same variable in the
same context has the same value. Functional languages are like mathematics
formalisms in this respect and unlike procedural, or imperative, programming
languages. A variable in a procedural language is really a name for a memory location;
it has a current value, or state, as represented by its content at any time. A variable in a
declarative language such as XQuery is really a name for a static value.

XQuery Expressions

XQuery expressions are case-sensitive. The expressions include the following:

primary expression - literal, variable, or function application. A variable name
starts with a dollar-sign ($) — for example, $ foo. Literals include numerals,
strings, and character or entity references.

XPath expression — Any XPath expression. The XPath 2.0 standard is a subset of
XQuery.

FLWOR expression — The most important XQuery expression, composed of the
following, in order, from which FLWOR takes its name: for, let, where, order
by, return.

XQuery sequence — The comma (, ) constructor creates sequences.
Sequence-manipulating functions such as union and intersect are also
available. All XQuery sequences are effectively flat: a nested sequence is treated as
its flattened equivalent. Thus, for instance, (1, 2, (3, 4, (5), 6), 7)is
treatedas (1, 2, 3, 4, 5, 6, 7).Asingletonsequence, suchas (42), acts
the same in most XQuery contexts as does its single item, 42. Remember that the
result of any XQuery expression is a sequence.

Direct (literal) constructions — XML element and attribute syntax automatically
constructs elements and attributes: what you see is what you get. For example, the
XQuery expression <a>33</a> constructs the XML element <a>33</a>.

Computed (dynamic) constructions — You can construct XML data at run time
using computed values. For example, the following XQuery expression constructs
this XML data: <foo toto="5"><bar>tata titi</bar> why? </foo>.

<foo>attribute toto {2+3},
element bar {"tata", "titi"},
text {" why? "}</foo>

In this example, element foo is a direct construction; the other constructions are
computed. In practice, the arguments to computed constructors are not literals
(such as toto and "tata"), but expressions to be evaluated (such as 2+3). Both
the name and the value arguments of an element or attribute constructor can be
computed. Braces ({, }) are used to mark off an XQuery expression to be
evaluated.

Using XQuery with Oracle XML DB 5-3



Overview of the XQuery Language

Conditional expression — As usual, but remember that each part of the expression
is itself an arbitrary expression. For instance, in this conditional expression, each of
these subexpressions can be any XQuery expression: something,
somethingElse, expressionl, and expression?2.

if (something < somethingElse) then expressionl else expression2

Arithmetic, relational expression — As usual, but remember that each relational
expression returns a (Boolean') value. Examples:

2+ 3

42 < $a + 5
(1, 4) = (1, 2)
5 > 3 eq truel()

Quantifier expression — Universal (every) and existential (some) quantifier
functions provide shortcuts to using a FLWOR expression in some cases.
Examples:

every $foo in doc("bar.xml")//Whatever satisfies S$foo/@bar > 42
some $toto in (42, 5), S$titi in (123, 29, 5) satisfies S$toto = Stiti

Regular expression — XQuery regular expressions are based on XML Schema 1.0
and Perl. (See Support for XQuery Functions and Operators on page 5-43.)

Type expression — An XQuery expression that represents an XQuery type.
Examples: item(),node(),attribute(), element (), document-node (),
namespace (), text (), xs:integer, xs: string.2

Type expressions can have occurrence indicators: ? (optional: zero or one), *
(zero or more), + (one or more). Examples: document-node (element () ) *,
item()+, attribute () 2.

XQuery also provides operators for working with types. These include cast as,
castable as, treat as, instance of, typeswitch, and validate. For
example, "42" cast as xs:integer is an expression whose value is the
integer 2. (It is not, strictly speaking, a type expression, because its value does not
represent a type.)

FLWOR Expressions

As for XQuery in general, there is a lot to learn about FLWOR expressions. This section
provides only a brief overview.

FLWOR is the most general expression syntax in XQuery. FLWOR (pronounced
"flower") stands for for, let, where, order by, and return. A FLWOR expression
has at least one for or let clause and a return clause; single where and order by
clauses are optional.

for — Bind one or more variables each to any number of values, in turn. That is,
for each variable, iterate, binding the variable to a different value for each
iteration.

At each iteration, the variables are bound in the order they appear, so that the
value of a variable $earlier that is listed before a variable $1later in the for

1 The value returned is a sequence, as always. However, in XQuery, a sequence of one item is

equivalent to that item itself. In this case, the single item is a Boolean value.

2 Namespace prefix xs is predefined for the XML Schema namespace,

http://www.w3.0rg/2001/XMLSchema.

5-4 Oracle XML DB Developer's Guide



SQL/XML Functions XMLQUERY and XMLTABLE

list, can be used in the binding of variable $1ater. For example, during its second
iteration, this expression binds $1 to 4 and $j to 6 (2+4):

for $i in (3, 4), $j in ($i, 2+$i)

m let - Bind one or more variables.

Just as with for, a variable can be bound by let to a value computed using
another variable that is listed previously in the binding list of the 1et (or an
enclosing for or let). For example, this expression binds $j to 5 (3+2):

let $i := 3, &5 := $i + 2

» where - Filter the for and let variable bindings according to some condition.
This is similar to a SQL WHERE clause.

s order by - Sort the result of where filtering.

s return - Construct a result from the ordered, filtered values. This is the result of
the FLWOR expression as a whole. It is a flattened sequence.

Expressions for and let act similarly to a SQL FROM clause. Expression where acts
like a SQL WHERE clause Expression order by is similar to ORDER BY in SQL.
Expression return is like SELECT in SQL. Except for the two keywords whose names
are the same in both languages (where, order by), FLWOR clause order is more or
less opposite to the SQL clause order, but the meanings of the corresponding clauses
are quite similar.

Note that using a FLWOR expression (with order by) is the only way to construct an
XQuery sequence in any order other than document order.

SQL/XML Functions XMLQUERY and XMLTABLE

SQL /XML functions XMLQuery, XMLTable, XMLExists, and XMLCast are defined
by the SQL/XML standard as a general interface between the SQL and XQuery
languages. As is the case for the other SQL /XML functions, these functions let you
take advantage of the power and flexibility of both SQL and XML. Using these
functions, you can construct XML data using relational data, query relational data as if
it were XML, and construct relational data from XML data.

SQL functions XMLExists and XMLCast are documented elsewhere in this manual.
This section presents functions XMLQuery and XMLTable, but many of the examples
in this chapter use also XMLExists, and XMLCast. In terms of typical use:

=  XMLQuery and XMLCast are typically used in a SELECT list.
= XMLTable is typically used in a SQL FROM clause.
= XMLExists is typically used in a SQL WHERE clause.

Both XMLQuery and XMLTable evaluate an XQuery expression. In the XQuery
language, an expression always returns a sequence of items. Function XMLQuery
aggregates the items in this sequence to return a single XML document or fragment.
Function XML Table returns a SQL table whose rows each contain one item from the
XQuery sequence.

Using XQuery with Oracle XML DB  5-5



SQL/XML Functions XMLQUERY and XMLTABLE

See Also:

Oracle Database SQL Language Reference for information about
Oracle support for the SQL /XML standard

http://www.sglx.org for information about SQL /XML
functions

http://www.w3.org for information about the XQuery
language

"Generating XML using SQL Functions" on page 18-2 for
information about using other SQL /XML functions with Oracle
XML DB

"Querying XMLType Data using SQL/XML Functions XMLEXxists
and XMLCast" on page 4-2

XMLQUERY SQL/XML Function in Oracle XML DB

You use SQL/XML function XMLQuery to construct or query XML data. This function
takes as arguments an XQuery expression, as a string literal, and an optional XQuery
context item, as a SQL expression. The context item establishes the XPath context in
which the XQuery expression is evaluated. Additionally, XMLQuery accepts as
arguments any number of SQL expressions whose values are bound to XQuery
variables during the XQuery expression evaluation. The function returns the result of
evaluating the XQuery expression, as an XMLType instance.

Figure 5-1 XMLQUERY Syntax

XML_passing_clause [—>| NULL |->| ON |->| EMPTY |-\
XQuery_string J| RETURNING |5| CONTENT | )
( |

XML_passing_clause ::=

—>| PASSING

M)
o

(" expr )

s  XQuery stringisa complete XQuery expression, possibly including a prolog, as
a literal string.

s The XML, passing clauseis the keyword PASSING followed by one or more
SQL expressions (expr) that each return an XMLType instance or an instance of a
SQL scalar data type (that is, not an object or collection data type). Each expression
(expr) can be a table or view column value, a PL/SQL variable, or a bind variable
with proper casting. All but possibly one of the expressions must each be followed
by the keyword AS and an XQuery identifier. The result of evaluating each
expr is bound to the corresponding identifier for the evaluation of XQuery.
string. If there is an expr that is not followed by an AS clause, then the result of
evaluating that expr is used as the context item for evaluating XQuery string.
Oracle XML DB supports only passing BY VALUE, not passing BY REFERENCE, so
the clause BY VALUE is implicit and can be omitted.

5-6 Oracle XML DB Developer's Guide



SQL/XML Functions XMLQUERY and XMLTABLE

= RETURNING CONTENT indicates that the value returned by an application of
XMLQuery is an instance of parameterized XML type XML (CONTENT) , not
parameterized type XML (SEQUENCE) . It is a document fragment that conforms to
the extended Infoset data model. As such, it is a single document node with any
number of children. The children can each be of any XML node type; in particular,
they can be text nodes.

Oracle XML DB supports only the RETURNING CONTENT clause of SQL/XML
function XMLQuery; it does not support the RETURNING SEQUENCE clause.

You can pass an XMLType column, table, or view as the context-item argument to
function XMLQuery—see, for example, Example 5-8.

To query a relational table or view as if it were XML data, without having to first
create a SQL /XML view on top of it, use XQuery function fn: collection within an
XQuery expression, passing as argument a URI that uses the URI-scheme name oradb
together with the database location of the data. See "URI Scheme oradb: Querying
Table or View Data with XQuery" on page 5-10.

Note: Prior to Oracle Database 11g Release 2, some users employed
Oracle SQL functions extract and extractValue to do some of
what can be done better using SQL /XML functions XMLQuery and
XMLCast. SQL functions extract and extractValue are deprecated
in Oracle Database 11g Release 2.

See Also:

m http://www.sglx.org for information about the definition of
SQL /XML function XMLQuery

»  Oracle Database SQL Language Reference for reference information
about SQL /XML function XMLQuery in Oracle Database

XMLTABLE SQL/XML Function in Oracle XML DB

You use SQL/XML function XML Table to decompose the result of an
XQuery-expression evaluation into the relational rows and columns of a new, virtual
table. You can then insert the virtual table into a pre-existing database table, or you can
query it using SQL—in a join expression, for example (see Example 5-9). You use
XMLTable in a SQL FROM clause.

Figure 5-2 XMLTABLE Syntax

ﬁCXML,namespaces,clausem
XMLTABLE |( ( {XQuery_string){xmLTABLE_options}@

XML_namespaces_clause ::=

()
)
XMLNAMESPACES (

Using XQuery with Oracle XML DB 5-7



SQL/XML Functions XMLQUERY and XMLTABLE

XMLTABLE_options ::=

XML_table_column

XML_passing_clause I—)| COLUMNS

XML_passing_clause ::=

(M)
N\
i} | |
—>| PASSING ( expr )

XML_table _column ::=

FOR |->| ORDINALITY |

|
P D S i GO

s  XQuery stringisacomplete XQuery expression, possibly including a prolog, as
a literal string. The value of the expression serves as input to the XMLTable
function; it is this XQuery result that is decomposed and stored as relational data.

column

datatype

= The optional XMLNAMESPACES clause contains XML namespace declarations that
are referenced by XQuery._stringand by the XPath expression in the PATH
clause of XML, _table column.

s The XML, passing clauseis the keyword PASSING followed by one or more
SQL expressions (expr) that each return an XMLType instance or an instance of a
SQL scalar data type (that is, not an object or collection data type). Each expression
(expr) can be a table or view column value, a PL/SQL variable, or a bind
variables with proper casting. All but possibly one of the expressions must each be
followed by the keyword AS and an XQuery identifier. The result of
evaluating each expr is bound to the corresponding identifier for the
evaluation of XQuery. string.If there is an expr that is not followed by an AS
clause, then the result of evaluating that expr is used as the context item for
evaluating XQuery. string. Oracle XML DB supports only passing BY VALUE,
not passing BY REFERENCE, so the clause BY VALUE is implicit and can be
omitted.

= The optional COLUMNS clause defines the columns of the virtual table to be created
by XMLTable.

=  If you omit the COLUMNS clause, then XMLTable returns a row with a single
XMLType pseudo-column, named COLUMN_VALUE.

= FOR ORDINALITY specifies that column is to be a column of generated row
numbers (SQL data type NUMBER). There must be at most one FOR
ORDINALITY clause.

= For each resulting column except the FOR ORDINALITY column, you must
specify the column data type, which can be XMLType or any other SQL data
type (called datatype in the syntax description).

= The optional PATH clause specifies that the portion of the XQuery result that is
addressed by XQuery expression stringis to be used as the column content.
You can use multiple PATH clauses to split the XQuery result into different
virtual-table columns.

5-8 Oracle XML DB Developer's Guide



Predefined Namespaces and Prefixes

If you omit PATH, then the XQuery expression column is assumed. For
example, these two expressions are equivalent:

XMLTable (... COLUMNS foo)
XMLTable (... COLUMNS foo PATH 'FOO')
The XQuery expression string must represent a relative path; it is relative to

the path XQuery_string.

= The optional DEFAULT clause specifies the value to use when the PATH
expression results in an empty sequence (or NULL). Its expr is an XQuery
expression that is evaluated to produce the default value.

See Also:

s http://www.sglx.org for information about the definition of
SQL /XML function XMLTable

»  Oracle Database SQL Language Reference for reference information
about SQL /XML function XMLTable in Oracle Database

Note: Prior to Oracle Database 11g Release 2, some users employed
Oracle SQL function XMLSequence within a SQL TABLE collection
expression, that is, TABLE (XMLSequence (. . .) ), to do some of what
can be done better using SQL /XML function XMLTable. Function
XMLSequence is deprecated in Oracle Database 11g Release 2.

See Oracle Database SQL Language Reference for information about the
SQL TABLE collection expression.

When To Use XQuery

You can use XQuery to do many of the same things that you might do using the
SQL/XML generation functions or XSLT; there is a great deal of overlap. The decision
to use one or the other tool to accomplish a given task can be based on many
considerations, most of which are not specific to Oracle Database. Please consult
external documentation on this general question.

One general rule of thumb is that XQuery is often used when the focus is the world of
XML data, while the SQL /XML generation functions (XMLElement, XMLAgg, and so
on) are often used when the focus is the world of relational data.

Other things being equal, if a query constructs an XML document from fragments
extracted from existing XML documents, then it is likely that an XQuery FLOWR
expression is simpler (simplifying code maintenance) than extracting scalar values
from relational data and constructing appropriate XML data using SQL/XML
generation functions. If, instead, a query constructs an XML document from existing
relational data, the SQL /XML generation functions can often be more suitable.

With respect to Oracle XML DB, you can expect the same general level of performance
using the SQL/XML generation functions as with XMLQuery and XMLTable—all are
subject to rewrite optimizations.

Predefined Namespaces and Prefixes

The following namespaces and prefixes are predefined for use with XQuery in Oracle
XML DB:

Using XQuery with Oracle XML DB  5-9



URI Scheme oradb: Querying Table or View Data with XQuery

Table 5-1 Predefined Namespaces and Prefixes

Prefix Namespace Description

ora  http://xmlns.oracle.com/xdb Oracle XML DB namespace

local http://www.w3.org/2003/11/xpath-local-functions XPath local function declaration
namespace

fn http://www.w3.0rg/2003/11/xpath-functions XPath function namespace

xml http://www.w3.0org/XML/1998/namespace XML namespace

Xs http://www.w3.0rg/2001/XMLSchema XML Schema namespace

xsi http://www.w3.0rg/2001/XMLSchema-instance XML Schema instance namespace

You can use these prefixes in XQuery expressions without first declaring them in the
XQuery-expression prolog. You can redefine any of them except xm1 in the prolog. All
of these prefixes except ora are predefined in the XQuery standard.

URI Scheme oradb: Querying Table or View Data with XQuery

You can use XQuery functions fn:doc and fn:collection to query resources in
Oracle XML DB Repository—see"Querying XML Data in Oracle XML DB Repository
using XQuery" on page 5-16. This section is about using XQuery function
fn:collection to query data in database tables and views.

To do this, you pass function fn:collection a URI argument that specifies the table
or view to query. The Oracle URI scheme oradb identifies this usage: without it, the
argument is treated as a repository location.

The table or view that is queried can be relational or of type XMLType. If relational, its
data is converted on the fly and treated as XML. The result returned by
fn:collection is always an XQuery sequence.

s For an XMLType table, the root element of each XML document returned by
fn:collection is the same as the root element of an XML document in the
table.

= For arelational table, the root element of each XML document returned by
fn:collection is ROW. The children of the ROW element are elements with the
same names (uppercase) as columns of the table. The content of a child element
corresponds to the column data. That content is an XML element if the column is
of type XMLType; otherwise (the column is a scalar type), the content is of type
XS:string.

The format of the URI argument passed to fn:collection is as follows:

s For an XMLType or relational table or view, TABLE, in database schema
DB-SCHEMA:

oradb:/DB-SCHEMA/ TABLE/

You can use PUBLIC for DB-SCHEMA if TABLE is a public synonym or TABLE is a
table or view that is accessible to the database user currently logged in.

s For an XMLType column in a relational table or view:

oradb: /DB-SCHEMA/REL-TABLE/ROWPRED/ X-COL

5-10 Oracle XML DB Developer's Guide



Oracle XQuery Extension Functions

REL-TABLE is a relational table or view; PRED is an XPath predicate that does not
involve any XMLType columns; and X-COL is an XMLType column in REL-TABLE.
PRED s optional; DB-SCHEMA, REL-TABLE, and X-COL are required.

Optional XPath predicate PRED must satisfy the following conditions:
s It does not involve any XMLType columns.

s Itinvolves only conjunctions (and) and disjunctions (or) of general equality and
inequality comparisons (=, ! =, >, <, >=, and <=).

»  For each comparison operation: Either both sides name (non-XML) columns in
REL-TABLE or one side names such a column and the other is a value of the
proper type, as specified in Table 5-2. Use of any other type raises an error.

Table 5-2 oradb Expressions: Column Types for Comparisons

Relational Column Type XQuery Value Type

VARCHAR2, CHAR xs: string or string literal

NUMBER, FLOAT, BINARY_FLOAT, BINARY_DOUBLE xs:decimal,xs:float,xs:double,
or numeric literal

DATE, TIMESTAMP, TIMESTAMP WITH TIMEZONE, xs:date,xs:time,or xs:dateTime
TIMESTAMP WITH LOCAL TIMEZONE

INTERVAL YEAR TO MONTH xs:yearMonthDuration
INTERVAL DAY TO SECOND xs:dayTimeDuration
RAW xs:hexBinary

ROWID xs:string or string literal

For example, this XQuery expression represents all XML documents in XMLType
column warehouse_spec of table oe.warehouses, for the rows where column
warehouse_id has a value less than 6:

fn:collection('oradb:/OE/WAREHOUSES/ROW[WAREHOUSE_ID < 6] /WAREHOUSE_SPEC')

See Also: "Querying Table or View Data using XQuery" on page 5-18

Oracle XQuery Extension Functions

Oracle XML DB adds some XQuery functions to those provided in the W3C standard.
These additional functions are in the Oracle XML DB namespace,
http://xmlns.oracle.com/xdb, which uses the predefined prefix ora. This
section describes these Oracle extension functions.

ora:contains XQuery Function

ora:contains Syntax

ora:contains (input_text, text_query [, policy_name] [, policy_owner])

XQuery and XPath function ora: contains can be used in an XQuery expression in a
call to SQL /XML function XMLQuery, XMLTable, or XMLExists. It is used to restrict
a structural search with a full-text predicate. Function ora:contains returns a
positive integer when the input_ text matches text_query (the higher the number,
the more relevant the match), and zero otherwise. When used in an XQuery expression
(that is not also an XPath expression), the XQuery return type is xs: integer();

Using XQuery with Oracle XML DB 5-11



Oracle XQuery Extension Functions

when used in an XPath expression outside of an XQuery expression, the XPath return
type is number.

Argument input_text must evaluate to a single text node or an attribute. The syntax
and semantics of text_queryin ora:contains are the same as text_queryin
contains, with a few restrictions.

See Also: "ora:contains XQuery Function" on page 12-17
ora:matches XQuery Function

ora:matches Syntax

ora:matches (target_string, match pattern [, match_parameter])

XQuery function ora:matches lets you use a regular expression to match text in a
string. It returns true () if its target_stringargument matches its
regular-expression match_patternargument and false () otherwise. If target_
stringis the empty sequence, false () is returned. Optional argument match_
parameter is a code that qualifies matching: case-sensitivity and so on.

The behavior of XQuery function ora:matches is the same as that of SQL condition
REGEXP_LIKE, but the types of its arguments are XQuery types instead of SQL data
types. The argument types are as follows:

m target_string-xs: string?3
m match pattern-xs:string

m match parameter -—xs:string

See Also: Oracle Database SQL Language Reference for information
about SQL condition REGEXP_LIKE

ora:replace XQuery Function

ora:replace Syntax
ora:replace (target_string, match_pattern, replace string [, match_parameter])

XQuery function ora: replace lets you use a regular expression to replace matching
text in a string. Each occurrence in target_string that matches regular-expression
match_patternisreplaced by replace_string. It returns the new string that
results from the replacement. If target_stringis the empty sequence, then the
empty string (" ") is returned. Optional argument match_parameter is a code that
qualifies matching: case-sensitivity and so on.

The behavior of XQuery function ora:replace is the same as that of SQL function
regexp_replace, but the types of its arguments are XQuery types instead of SQL
data types. The argument types are as follows:

m target_string-—xs: string?4
m match pattern-xs:string

m replace_string-xs:string

The question mark (?) here is a zero-or-one occurrence indicator that indicates that the
argument can be the empty sequence. See "XQuery Expressions" on page 5-3.

IS

The question mark (?) here is a zero-or-one occurrence indicator that indicates that the
argument can be the empty sequence. See "XQuery Expressions" on page 5-3.

5-12 Oracle XML DB Developer's Guide



Oracle XQuery Extension-Expression Pragmas

m match parameter —xs:string

In addition, ora:replace requires argument replace_string (it is optional in
regexp_replace) and it does not use arguments for position and number of
occurrences — search starts with the first character and all occurrences are replaced.

See Also: Oracle Database SQL Language Reference for information
about SQL function regexp_replace

ora:sqrt XQuery Function

ora:sqrt Syntax

ora:sqrt (number)

XQuery function ora: sqgrt returns the square root of its numeric argument, which
can be of XQuery type xs:decimal, xs:float, or xs:double. The returned value
is of the same XQuery type as the argument.

ora:tokenize XQuery Function

ora:tokenize Syntax

ora:tokenize (target_string, match pattern [, match_parameter])

XQuery function ora: tokenize lets you use a regular expression to split the input
string target_stringinto a sequence of strings. It treats each substring that
matches the regular-expression match_pattern as a separator indicating where to
split.

It returns the sequence of tokens as an XQuery value of type xs: string* (a sequence
of xs:string values). If target_stringis the empty sequence, it is returned.
Optional argument match_parameter is a code that qualifies matching:
case-sensitivity and so on.

The argument types are as follows:
m target_string-xs: string?5
m match pattern-xs:string

m match parameter -—xs:string

Oracle XQuery Extension-Expression Pragmas

The W3C XQuery specification lets an implementation provide
implementation-defined extension expressions. An XQuery extension expression is an
XQuery expression that is enclosed in braces ({, }) and prefixed by an
implementation-defined pragma.

The Oracle implementation provides the pragmas described in this section. No other
pragmas are recognized than those listed here. Use of any other pragma, or use of any
of these pragmas with incorrect pragma content (for example, (#ora:view_on_null
something_else #)), raises an error.

5 The question mark (?) here is a zero-or-one occurrence indicator that indicates that the
argument can be the empty sequence. See "XQuery Expressions" on page 5-3.

Using XQuery with Oracle XML DB  5-13



Oracle XQuery Extension-Expression Pragmas

In the ora:view_on_null examples here, assume that table null_test has
columns a and b of type VARCHAR2 (10), and that column b (but not a) is empty.

s (#ora:defaultTable #)- Specify the default table used to store repository
data. Use this to improve the performance of repository queries that use Query
function fn:doc or fn:collection. See "Using Oracle XQuery Pragma
ora:defaultTable" on page 5-36.

» (#ora:invalid_path empty #) - Treat an invalid XPath expression as if its
targeted nodes do not exist. For example:

SELECT XMLQuery (' (#ora:invalid_path empty #)
{exists ($p/PurchaseOrder//NotInTheSchema) }'
PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM oe.purchaseorder p;

The XML schema for table oe . purchaseorder does not allow any such node
NotInTheSchema as a descendant of node PurchaseOrder. Without the
pragma, the use of this invalid XPath expression would raise an error. But with the
pragma, the calling context acts just as if the XPath expression had targeted no
nodes. That calling context in this example is XQuery function exists, which
returns XQuery Boolean value false when passed an empty node sequence.
(XQuery function exists is used in this example only to illustrate the behavior;
the pragma is not especially related to function exists.)

s (#ora:view_on null empty #) —XQuery function fn:collection returns
an empty XML element for each NULL column. For example, the following query
returns <ROW><A>x</A><B></B></ROW>:

SELECT XMLQuery (' (#ora:view_on_null empty #)
{for $i in fn:collection("oradb:/PUBLIC/NULL_TEST")/ROW
return $i}'
RETURNING CONTENT)

FROM DUAL;
s (#ora:view_on null null #) —XQuery function fn:collection returns
no element for a NULL column. For example, the following query returns
<ROW><A>x</A></ROW>:

SELECT XMLQuery (' (#ora:view_on_null null #)
{for $i in fn:collection("oradb:/PUBLIC/NULL_TEST") /ROW
return $i}'
RETURNING CONTENT)
FROM DUAL;

» (#ora:xg proc #) —Do not optimize XQuery procedure calls in the XQuery
expression that follows the pragma; use functional evaluation instead.

This has the same effect as the SQL hint /*+ NO_XML_QUERY_REWRITE */,but
the scope of the pragma is only the XQuery expression that follows it (not an
entire SQL statement).

See Also: "Turning Off Use of XMLIndex" on page 6-30 for
information about optimizer hint NO_XML_QUERY_REWRITE

» (#ora:xg gry #) —Try to optimize the XQuery expression that follows the
pragma. That is, if possible, do not evaluate it functionally.

As an example of using both ora:xqg proc and ora:xq_gry, in the following
query the XQuery expression argument to XMLQuery will in general be evaluated

5-14 Oracle XML DB Developer's Guide



XMLQUERY and XMLTABLE Examples

functionally, but the fn:collection subexpressions that are preceded by
pragma ora:xqg_gry will be optimized, if possible.

SELECT XMLQuery (' (#ora:xq proc#) (: Do not optimize the XQuery expression :)

{for $i in (#ora:xq qry#) (: Optimize this subexpression :)
{fn:collection("oradb:/HR/REGIONS") },

$j in (#ora:xq qry#) (: Optimize this subexpression :)

{fn:collection("oradb:/HR/COUNTRIES") }
where $i/ROW/REGION_ID = $3/ROW/REGION_ID
and $1/ROW/REGION_NAME = $regionname
return $j}°'
PASSING CAST('&REGION' AS VARCHAR2 (40)) AS "regionname"
RETURNING CONTENT)
AS asian_countries FROM DUAL;

XMLQUERY and XMLTABLE Examples

XQuery is a very general and expressive language, and SQL /XML functions
XMLQuery, XMLTable, and XMLExists combine that power of expression and
computation with the similar strengths of SQL. This section illustrates some of what
you can do with these two SQL/XML functions. See "XMLEXISTS SQL /XML
Function" on page 4-3 for information about XMLExists.

You typically use XQuery with Oracle XML DB in the following ways. The examples
here are organized to reflect these different uses.

s Query XML data in Oracle XML DB Repository.
See "Querying XML Data in Oracle XML DB Repository using XQuery".

= Query a relational table or view as if it were XML data. To do this, you use Oracle
XQuery function fn:collection, passing as argument a URI that uses the
URI-scheme name oradb together with the database location of the data.

See "Querying Table or View Data using XQuery".

s Query XMLType relational data, possibly decomposing the resulting XML into
relational data using function XMLTable.

See "Using XQuery with XMLIype Data".

Example 5-1 creates Oracle XML DB Repository resources that are used in some of the
other examples in this chapter.

Example 5-1 Creating Resources for Examples

DECLARE
res BOOLEAN;
empsxmlstring VARCHAR2 (300) :=
'<?xml version="1.0"?>
<emps>
<emp empno="1" deptno="10" ename="John" salary="21000"/>
<emp empno="2" deptno="10" ename="Jack" salary="310000"/>
<emp empno="3" deptno="20" ename="Jill" salary="100001"/>
</emps>";
empsxmlnsstring VARCHAR2 (300) :=
'<?xml version="1.0"?>
<emps xmlns="http://example.com">
<emp empno="1" deptno="10" ename="John" salary="21000"/>
<emp empno="2" deptno="10" ename="Jack" salary="310000"/>
<emp empno="3" deptno="20" ename="Jill" salary="100001"/>
</emps>"';

Using XQuery with Oracle XML DB  5-15



XMLQUERY and XMLTABLE Examples

deptsxmlstring VARCHAR2 (300) :=
'<?xml version="1.0"?>
<depts>
<dept deptno="10" dname="Administration"/>
<dept deptno="20" dname="Marketing"/>
<dept deptno="30" dname="Purchasing"/>

</depts>"';
BEGIN
res := DBMS_XDB.createResource('/public/emps.xml', empsxmlstring) ;
res := DBMS_XDB.createResource('/public/empsns.xml', empsxmlnsstring);
res := DBMS_XDB.createResource('/public/depts.xml', deptsxmlstring);
END;
/

XQuery Is About Sequences

It is important to keep in mind that XQuery is a general sequence-manipulation
language. Its expressions and their results are not necessarily XML data. An XQuery
sequence can contain items of any XQuery type, which includes numbers, strings,
Boolean values, dates, and various types of XML node (document-node (),
element (), attribute (), text (), namespace (), and so on). Example 5-2
provides a sampling.

Example 5-2 XMLQuery Applied to a Sequence of Items of Different Types

SELECT XMLQuery('(l, 2 + 3, "a", 100 to 102, <A>33</A>)'
RETURNING CONTENT) AS output
FROM DUAL;

OUTPUT

15 a 100 101 102<A>33</A>
1 row selected.

Example 5-2 applies SQL/XML function XMLQuery to an XQuery sequence that
contains items of several different kinds:

= aninteger literal: 1

= aarithmetic expression: 2 + 3

= astring literal: "a"

= asequence of integers: 100 to 102

s a constructed XML element node: <A>33</A>

Example 5-2 also shows construction of a sequence using the comma operator (, ) and
parentheses ((, )) for grouping.

The sequence expression 100 to 102 evaluates to the sequence (100, 101, 102),
so the argument to XMLQuery here is a sequence that contains a nested sequence. The
sequence argument is automatically flattened, as is always the case for XQuery
sequences. The argument is, in effect, (1, 5, "a", 100, 101, 102,
<A>33</A>).

Querying XML Data in Oracle XML DB Repository using XQuery

This section presents examples of using XQuery with XML data in Oracle XML DB
Repository. You use XQuery functions fn:doc and fn:collection to query file and

5-16 Oracle XML DB Developer's Guide



XMLQUERY and XMLTABLE Examples

folder resources in the repository, respectively. The examples in this section use
XQuery function fn:doc to obtain a repository file that contains XML data, and then
bind XQuery variables to parts of that data using for and 1et FLWOR-expression
clauses.

See Also: XQuery Functions fn:doc, fn:collection, and
fn:doc-available

Example 5-3 queries two XML-document resources in Oracle XML DB Repository:
/public/emps.xml and /public/depts.xml. It illustrates the use of £n:doc and
each of the possible FLWOR-expression clauses.

Example 5-3 FLOWR Expression using for, let, order by, where, and return

SELECT XMLQuery('for $e in doc("/public/emps.xml")/emps/emp
let %4 :=
doc (" /public/depts.xml")//dept[@deptno = $e/@deptno]/@dname
where $e/@salary > 100000
order by $e/@empno
return <emp ename="{$e/@ename}" dept="{$d}"/>'
RETURNING CONTENT) FROM DUAL;

XMLQUERY (' FORSEINDOC (" /PUBLIC/EMPS.XML") /EMPS/EMPLETS$D:=DOC (" /PUBLIC/DEPTS.XML")

<emp ename="Jack" dept="Administration"></emp><emp ename="Jill" dept="Marketing"
></emp>

1 row selected.

In Example 5-3, the various FLWOR clauses perform these operations:

» for iterates over the emp elements in /public/emps .xml, binding variable Se
to the value of each such element, in turn. That is, it iterates over a general list of
employees, binding $e to each employee.

» let binds variable $d to a sequence consisting of all of the values of dname
attributes of those dept elements in /public/emps.xml whose deptno
attributes have the same value as the deptno attribute of element $e (this is a join
operation). That is, it binds $d to the names of all of the departments that have the
same department number as the department of employee $e. (It so happens that
the dname value is unique for each deptno value in depts.xml.) Note that,
unlike for, let never iterates over values; $d is bound only once in this example.

»  Together, for and let produce a stream of tuples ($e, $d), where $e represents
an employee and $d represents the names of all of the departments to which that
employee belongs—in this case, the unique name of the employee's unique
department.

» where filters this tuple stream, keeping only tuples with employees whose salary
is greater than 100,000.

= order by sorts the filtered tuple stream by employee number, empno (in
ascending order, by default).

= return constructs emp elements, one for each tuple. Attributes ename and dept
of these elements are constructed using attribute ename from the input and $d,
respectively. Note that the element and attribute names emp and ename in the
output have no necessary connection with the same names in the input document
emps .xml.

Using XQuery with Oracle XML DB 5-17



XMLQUERY and XMLTABLE Examples

Example 54 also uses each of the FLWOR-expression clauses. It shows the use of
XQuery functions doc, count, avg, and integer, which are in the namespace for
built-in XQuery functions, http://www.w3.0rg/2003/11/xpath-functions.
This namespace is bound to the prefix £n.

Example 5-4 FLOWR Expression using Built-In Functions

SELECT XMLQuery('for $d in fn:doc("/public/depts.xml")/depts/dept/@deptno
let Se := fn:doc("/public/emps.xml")/emps/emp[@deptno = $d]
where fn:count($e) > 1
order by fn:avg(Se/@salary) descending
return
<big-dept>{$d,
<headcount>{fn:count ($e) }</headcount>,
<avgsal>{xs:integer (fn:avg($e/@salary)) }</avgsal>}
</big-dept>"
RETURNING CONTENT) FROM DUAL;

XMLQUERY (' FOR$DINFN:DOC (" /PUBLIC/DEPTS.XML") /DEPTS/DEPT/@DEPTNOLETSE: =FN:DOC (" /P

<big-dept deptno="10"><headcount>2</headcount><avgsal>165500</avgsal></big-dept>
1 row selected.

In Example 54, the various FLWOR clauses perform these operations:

» for iterates over deptno attributes in input document /public/depts.xml,
binding variable $d to the value of each such attribute, in turn.

= let binds variable se to a sequence consisting of all of the emp elements in input
document /public/emps.xml whose deptno attributes have value $d (this is a
join operation).

»  Together, for and let produce a stream of tuples (sd, se), where $d represents a
department number and $e represents the set of employees in that department.

» where filters this tuple stream, keeping only tuples with more than one employee.

= order by sorts the filtered tuple stream by average salary in descending order.
The average is computed by applying XQuery function avg (in namespace £n) to
the values of attribute salary, which is attached to the emp elements of $e.

= return constructs big-dept elements, one for each tuple produced by order
by. The text () node of big-dept contains the department number, bound to
$d. A headcount child element contains the number of employees, bound to se,
as determined by XQuery function count. An avgsal child element contains the
computed average salary.

Querying Table or View Data using XQuery

This section presents examples of using XQuery to query relational data as if it were
XML data.

Example 5-5 uses Oracle XQuery function fn:collection in a FLWOR expression
to query two relational tables, regions and countries. Both tables belong to sample
database schema HR. The example also passes scalar SQL value Asia to XQuery
variable $regionname. Any SQL expression can be evaluated to produce a value
passed to XQuery using PASSING. In this case, the value comes from a SQL*Plus
variable, REGION. You must cast the value to the scalar SQL data type expected, in this
case, VARCHAR2 (40).

5-18 Oracle XML DB Developer's Guide



XMLQUERY and XMLTABLE Examples

Example 5-5 Querying Relational Tables as XML

DEFINE REGION = 'Asia’

SELECT XMLQuery('for $i in fn:collection("oradb:/HR/REGIONS"),
$j in fn:collection("oradb:/HR/COUNTRIES")

where $i/ROW/REGION_ID
and $i/ROW/REGION_NAME

return $j°'

$3/ROW/REGION_ID
= S$regionname

PASSING CAST('&REGION' AS VARCHAR2 (40)) AS "regionname"
RETURNING CONTENT) AS asian_countries

FROM DUAL;

This produces the following result. (The result is shown here pretty-printed, for

clarity.)

ASIAN_COUNTRIES

<ROW>
<COUNTRY_ID>AU</COUNTRY_ID>
<COUNTRY_NAME>Australia</COUNTRY_NAME>
<REGION_ID>3</REGION_ID>

</ROW>

<ROW>
<COUNTRY_ID>CN</COUNTRY_ID>
<COUNTRY_NAME>China</COUNTRY_NAME>
<REGION_ID>3</REGION_ID>

</ROW>

<ROW>
<COUNTRY_ID>HK</COUNTRY_ID>
<COUNTRY_NAME>HongKong</COUNTRY_NAME>
<REGION_ID>3</REGION_ID>

</ROW>

<ROW>
<COUNTRY_ID>IN</COUNTRY_ID>
<COUNTRY_NAME>India</COUNTRY_NAME>
<REGION_ID>3</REGION_ID>

</ROW>

<ROW>
<COUNTRY_ID>JP</COUNTRY_ID>
<COUNTRY_NAME>Japan</COUNTRY_NAME>
<REGION_ID>3</REGION_ID>

</ROW>

<ROW>
<COUNTRY_ID>SG</COUNTRY_ID>
<COUNTRY_NAME>Singapore</COUNTRY_NAME>
<REGION_ID>3</REGION_ID>

</ROW>

1 row selected.

In Example 5-5, the various FLWOR clauses perform these operations:

s for iterates over sequences of XML elements returned by calls to
fn:collection. In the first call, each element corresponds to a row of relational
table hr . regions and is bound to variable $i. Similarly, in the second call to
fn:collection, $7 is bound to successive rows of table hr . countries. Since
regions and countries are not XMLType tables, the top-level element
corresponding to a row in each table is ROW (a wrapper element). Iteration over the

row elements is unordered.

Using XQuery with Oracle XML DB  5-19



XMLQUERY and XMLTABLE Examples

»  where filters the rows from both tables, keeping only those pairs of rows whose
region_id is the same for each table (it performs a join on region_id) and
whose region_name is Asia.

» return returns the filtered rows from table hr . countries as an XML document
containing XML fragments with ROW as their top-level element.

Example 5-6 uses fn:collection within nested FLWOR expressions to query
relational data.

Example 5-6 Using Relational Data in a Nested FLWOR Query

CONNECT hr
Enter password: password

Connected.

GRANT SELECT ON LOCATIONS TO OE
/

CONNECT oe

Enter password: password

Connected.

SELECT XMLQuery (
"for $1 in fn:collection("oradb:/OE/WAREHOUSES")/ROW
return <Warehouse id="{$i/WAREHOUSE_ID}">
<Location>
{for $j in fn:collection("oradb:/HR/LOCATIONS")/ROW
where $3/LOCATION_ID eq $i/LOCATION_ID
return ($j/STREET_ADDRESS, $j/CITY, $j/STATE_PROVINCE)}
</Location>
</Warehouse>'
RETURNING CONTENT) FROM DUAL;

This query is an example of using nested FLWOR expressions. It accesses relational
table warehouses, which is in sample database schema oe, and relational table
locations, which is in sample database schema HR. To run this example as user oe,
you must first connect as user hr and grant permission to user oe to perform SELECT
operations on table locations.

This produces the following result. (The result is shown here pretty-printed, for
clarity.)

XMLQUERY (' FORSIINFN:COLLECTION ( "ORADB: /OE/WAREHOUSES" ) /ROWRETURN<WAREHOUSEID="{$
<Warehouse id="1">
<Location>
<STREET_ADDRESS>2014 Jabberwocky Rd</STREET_ADDRESS>
<CITY>Southlake</CITY>
<STATE_PROVINCE>Texas</STATE_PROVINCE>
</Location>
</Warehouse>
<Warehouse id="2">
<Location>
<STREET_ADDRESS>2011 Interiors Blvd</STREET_ADDRESS>
<CITY>South San Francisco</CITY>
<STATE_PROVINCE>California</STATE_PROVINCE>
</Location>
</Warehouse>
<Warehouse id="3">

5-20 Oracle XML DB Developer's Guide



XMLQUERY and XMLTABLE Examples

<Location>
<STREET_ADDRESS>2007 Zagora St</STREET_ADDRESS>
<CITY>South Brunswick</CITY>
<STATE_PROVINCE>New Jersey</STATE_PROVINCE>

</Location>
</Warehouse>
<Warehouse id="4">
<Location>
<STREET_ADDRESS>2004 Charade Rd</STREET_ADDRESS>
<CITY>Seattle</CITY>
<STATE_PROVINCE>Washington</STATE_PROVINCE>
</Location>
</Warehouse>
<Warehouse id="5">
<Location>
<STREET_ADDRESS>147 Spadina Ave</STREET_ ADDRESS>
<CITY>Toronto</CITY>
<STATE_PROVINCE>Ontario</STATE_PROVINCE>
</Location>
</Warehouse>
<Warehouse id="6">
<Location>
<STREET_ADDRESS>12-98 Victoria Street</STREET ADDRESS>
<CITY>Sydney</CITY>
<STATE_PROVINCE>New South Wales</STATE_PROVINCE>
</Location>
</Warehouse>
<Warehouse id="7">
<Location>

<STREET_ADDRESS>Mariano Escobedo 9991</STREET ADDRESS>
<CITY>Mexico City</CITY>
<STATE_PROVINCE>Distrito Federal, </STATE_PROVINCE>

</Location>
</Warehouse>
<Warehouse id="8">
<Location>
<STREET_ADDRESS>40-5-12 Laogianggen</STREET_ADDRESS>
<CITY>Beijing</CITY>
</Location>
</Warehouse>
<Warehouse id="9">
<Location>
<STREET_ADDRESS>1298 Vileparle (E)</STREET_ADDRESS>
<CITY>Bombay</CITY>
<STATE_PROVINCE>Maharashtra</STATE_PROVINCE>
</Location>
</Warehouse>

1 row selected.

In Example 5-6, the various FLWOR clauses perform these operations:

» The outer for iterates over the sequence of XML elements returned by
fn:collection: each element corresponds to a row of relational table
oe.warehouses and is bound to variable $i. Since warehouses is not an
XMLType table, the top-level element corresponding to a row is ROW. The iteration
over the row elements is unordered.

Using XQuery with Oracle XML DB  5-21



XMLQUERY and XMLTABLE Examples

s The inner for iterates, similarly, over a sequence of XML elements returned by
fn:collection: each element corresponds to a row of relational table
hr.locations and is bound to variable $7.

= where filters the tuples ($1, $3), keeping only those whose location_id child is
the same for $1i and $3 (it performs a join on location_id).

s The inner return constructs an XQuery sequence of elements STREET_ADDRESS,
CITY, and STATE_PROVINCE, all of which are children of locations-table ROW
element $7; that is, they are the values of the locations-table columns of the same
name.

s The outer return wraps the result of the inner return in a Location element,
and wraps that in a Warehouse element. It provides the Warehouse element with
an id attribute whose value comes from the warehouse_1id column of table
warehouses.

See Also: Example 5-15 for the execution plan of Example 5-6

Example 5-7 uses SQL /XML function XMLTable to decompose the result of an
XQuery query to produce virtual relational data. The XQuery expression used in this
example is identical to the one used in Example 5-6; the result of evaluating the
XQuery expression is a sequence of Warehouse elements. Function XMLTable
produces a virtual relational table whose rows are those Warehouse elements. More
precisely, the value of pseudocolumn COLUMN_VALUE for each virtual-table row is an
XML fragment (of type XMLType) with a single Warehouse element.

Example 5-7 Querying a Relational Table as XML using XMLTable

SELECT *
FROM XMLTable (
"for $i in fn:collection("oradb:/OE/WAREHOUSES") /ROW
return <Warehouse id="{$i/WAREHOUSE_ID}">
<Location>
{for $j in fn:collection("oradb:/HR/LOCATIONS") /ROW
where $3/LOCATION_ID eq $i/LOCATION_ID
return ($j/STREET_ADDRESS, $3j/CITY, $3j/STATE_PROVINCE)}
</Location>
</Warehouse>"') ;

This produces the same result as Example 5-6, except that each Warehouse element is
output as a separate row, instead of all warehouse elements being output together in
a single row.

COLUMN_VALUE
<Warehouse id="1">
<Location>
<STREET_ADDRESS>2014 Jabberwocky Rd</STREET_ADDRESS>
<CITY>Southlake</CITY>
<STATE_PROVINCE>Texas</STATE_PROVINCE>
</Location>
</Warehouse>
<Warehouse id="2">
<Location>
<STREET_ADDRESS>2011 Interiors Blvd</STREET_ADDRESS>
<CITY>South San Francisco</CITY>
<STATE_PROVINCE>California</STATE_PROVINCE>
</Location>
</Warehouse>

5-22 Oracle XML DB Developer's Guide



XMLQUERY and XMLTABLE Examples

9 rows selected.

See Also: Example 5-16 for the execution plan of Example 5-7

Using XQuery with XMLType Data

This section presents examples of using XQuery with XMLType relational data.

The query in Example 5-8 passes an XMLType column, warehouse_spec, as context
item to XQuery, using function XMLQuery with the PASSING clause. It constructs a
Details element for each of the warehouses whose area is greater than 80,000:
/Warehouse/ Area > 80000.

Example 5-8 Querying an XMLType Column using XMLQuery PASSING Clause

SELECT warehouse_name,
XMLQuery (
'for $i in /Warehouse
where $i/Area > 80000
return <Details>
<Docks num="{$i/Docks}"/>
<Rail>{if ($i/RailAccess = "Y") then "true" else "false"}
</Rail>
</Details>"
PASSING warehouse_spec RETURNING CONTENT) big_warehouses
FROM oe.warehouses;

This produces the following output:

WAREHOUSE_NAME

Southlake, Texas
San Francisco
New Jersey

<Details><Docks num=""></Docks><Rail>false</Rail></Details>

Seattle, Washington

<Details><Docks num="3"></Docks><Rail>true</Rail></Details>
Toronto

Sydney

Mexico City

Beijing

Bombay

Using XQuery with Oracle XML DB  5-23



XMLQUERY and XMLTABLE Examples

9 rows selected.

In Example 5-8, function XMLQuery is applied to the warehouse_spec column in
each row of table warehouses. The various FLWOR clauses perform these operations:

s for iterates over the Warehouse elements in each row of column warehouse_
spec (the passed context item): each such element is bound to variable $1i, in turn.
The iteration is unordered.

» where filters the Warehouse elements, keeping only those whose Area child has
a value greater than 80,000.

= return constructs an XQuery sequence of Details elements, each of which
contains a Docks and a Rail child elements. The num attribute of the constructed
Docks element is set to the text () value of the Docks child of Warehouse. The
text () content of Rail is set to true or false, depending on the value of the
RailAccess attribute of element Warehouse.

The SELECT statement in Example 5-8 applies to each row in table warehouses. The
XMLQuery expression returns the empty sequence for those rows that do not match the
XQuery expression. Only the warehouses in New Jersey and Seattle satisfy the XQuery
query, so they are the only warehouses for which <Details>...</Details>is
returned.

Example 5-9 uses SQL/XML function XMLTable to query an XMLType table,
oe.purchaseorder, which contains XML Schema-based data. It uses the PASSING
clause to provide the purchaseorder table as the context item for the
XQuery-expression argument to XMLTable. Pseudocolumn COLUMN_VALUE of the
resulting virtual table holds a constructed element, A10po, which contains the
Reference information for those purchase orders whose CostCenter element has
value A10 and whose User element has value SMCCAIN. The query performs a join
between the virtual table and database table purchaseorder.

Example 5-9 Using XMLTABLE with XML Schema-Based Data

SELECT xtab.COLUMN_VALUE
FROM purchaseorder, XMLTable('for $i in /PurchaseOrder
where $i/CostCenter eg "Al0"
and $i/User eq "SMCCAIN"
return <Al0po pono="{$i/Reference}"/>"'
PASSING OBJECT_VALUE) xtab;

COLUMN_VALUE

<Al0po pono="SMCCAIN-20021009123336151PDT"></Al0po>
<Al0po pono="SMCCAIN-20021009123336341PDT"></Al0po>
<Al0po pono="SMCCAIN-20021009123337173PDT"></Al0po>
<Al0po pono="SMCCAIN-20021009123335681PDT"></Al0po>
<A10po pono="SMCCAIN-20021009123335470PDT"></A10po>
<Al0po pono="SMCCAIN-20021009123336972PDT"></Al0po>
<Al0po pono="SMCCAIN-20021009123336842PDT"></Al0po>
<Al0po pono="SMCCAIN-20021009123336512PDT"></Al0po>
<Al0po pono="SMCCAIN-2002100912333894PDT"></Al0po>
<Al0po pono="SMCCAIN-20021009123337403PDT"></Al0po>

10 rows selected.

The PASSING clause of function XMLTable passes the OBJECT_VALUE of XMLType
table purchaseorder, to serve as the XPath context. The XML Table expression thus

5-24 Oracle XML DB Developer's Guide



XMLQUERY and XMLTABLE Examples

depends on the purchaseorder table. Because of this, table purchaseorder must
appear before the XMLTable expression in the FROM list. This is a general requirement
in any situation involving data dependence.

Note: Whenever a PASSING clause refers to a column of an
XMLType table in a query, that table must appear before the
XMLTable expression in the query FROM list. This is because the
XMLTable expression depends on the XMLType table—a left lateral
(correlated) join is needed, to ensure a one-to-many (1:N) relationship
between the XMLType table row accessed and the rows generated
from it by XMLTable.

Example 5-10 is similar to Example 5-9 in its effect. It uses XML Query, instead of
XMLTable, to query oe . purchaseorder. These two examples differ in their
treatment of the empty sequences returned by the XQuery expression. In Example 5-9,
these empty sequences are not joined with the purchaseorder table, so the overall
SQL-query result set has only ten rows. In Example 5-10, these empty sequences are
part of the overall result set of the SQL query, which contains 132 rows, one for each of
the rows in table purchaseorder. All but ten of those rows are empty, and show up
in the output as empty lines. To save space here, those empty lines have been
removed.

Example 5-10 Using XMLQUERY with Schema-Based Data

SELECT XMLQuery('for $i in /PurchaseOrder
where $i/CostCenter eq "AlOQ"
and $i/User eq "SMCCAIN"
return <AlOpo pono="{$i/Reference}"/>"'
PASSING OBJECT_VALUE
RETURNING CONTENT)
FROM purchaseorder;

XMLQUERY (' FOR$IIN/PURCHASEORDERWHERESI/COSTCENTEREQ"A10"ANDSI/USEREQ" SMCCAIN"RET

<Al0po pono="SMCCAIN-20021009123336151PDT"></Al0po>
<Al0po pono="SMCCAIN-20021009123336341PDT"></Al0po>
<A10po pono="SMCCAIN-20021009123337173PDT"></A10po>
<Al0po pono="SMCCAIN-20021009123335681PDT"></Al10po>
<Al0po pono="SMCCAIN-20021009123335470PDT"></A10po>
<Al0po pono="SMCCAIN-20021009123336972PDT"></Al0po>
<Al0po pono="SMCCAIN-20021009123336842PDT"></Al0po>
<Al0po pono="SMCCAIN-20021009123336512PDT"></Al0po>
<A10po pono="SMCCAIN-2002100912333894PDT"></Al10po>
<Al0po pono="SMCCAIN-20021009123337403PDT"></Al10po>

132 rows selected.

See Also: Example 5-17 for the execution plan of Example 5-10

Example 5-11 uses XMLTable clauses PASSING and COLUMNS. The XQuery
expression iterates over top-level PurchaseOrder elements, constructing a PO
element for each purchase order with cost center A10. The resulting PO elements are
then passed to XMLTable for processing.

Example 5-11 Using XMLTABLE with PASSING and COLUMNS Clauses
SELECT xtab.poref, xtab.priority, xtab.contact

Using XQuery with Oracle XML DB  5-25



XMLQUERY and XMLTABLE Examples

FROM purchaseorder,
XMLTable('for $i in /PurchaseOrder
let $spl := $i/Speciallnstructions
where $i/CostCenter eq "AlOQ"
return <PO>
<Ref>{$i/Reference}</Ref>
{if ($spl eg "Next Day Air" or $spl eq "Expedite") then
<Type>Fastest</Type>
else if ($spl eg "Air Mail") then
<Type>Fast</Type>
else ()}
<Name>{$1/Requestor}</Name>
</PO>"'
PASSING OBJECT VALUE
COLUMNS poref VARCHAR2 (20) PATH 'Ref',
priority VARCHAR2(8) PATH 'Type' DEFAULT 'Regular',
contact VARCHAR2 (20) PATH 'Name') xtab;

POREF PRIORITY CONTACT
SKING-20021009123336 Fastest Steven A. King
SMCCAIN-200210091233 Regular Samuel B. McCain
SMCCAIN-200210091233 Fastest Samuel B. McCain
JCHEN-20021009123337 Fastest John Z. Chen
JCHEN-20021009123337 Regular John Z. Chen
SKING-20021009123337 Regular Steven A. King
SMCCAIN-200210091233 Regular Samuel B. McCain
JCHEN-20021009123338 Regular John Z. Chen

SMCCAIN-200210091233 Regular Samuel B. McCain
SKING-20021009123335 Regular Steven X. King
SMCCAIN-200210091233 Regular Samuel B. McCain
SKING-20021009123336 Regular Steven A. King
SMCCAIN-200210091233 Fast Samuel B. McCain
SKING-20021009123336 Fastest Steven A. King
SKING-20021009123336 Fastest Steven A. King
SMCCAIN-200210091233 Regular Samuel B. McCain

JCHEN-20021009123335 Regular John Z. Chen
SKING-20021009123336 Regular Steven A. King
JCHEN-20021009123336 Regular John Z. Chen
SKING-20021009123336 Regular Steven King
SMCCAIN-200210091233 Regular Samuel McCain
SKING-20021009123337 Regular Steven King
SKING-20021009123338 Fastest Steven King
SMCCAIN-200210091233 Regular Samuel B. McCain
JCHEN-20021009123337 Regular John Z. Chen
JCHEN-20021009123337 Regular John Z. Chen
JCHEN-20021009123337 Regular John Z. Chen
SKING-20021009123337 Regular Steven A. King
JCHEN-20021009123337 Regular John Z. Chen
SKING-20021009123337 Regular Steven A. King
SKING-20021009123337 Regular Steven A. King
SMCCAIN-200210091233 Fast Samuel B. McCain

R R

32 rows selected.

In Example 5-11, data from the children of PurchaseOrder is used to construct the
children of PO, which are Ref, Type, and Name. The content of Type is taken from the
content of /PurchaseOrder/SpecialInstructions, but the classes of
SpecialInstructions are divided up differently for Type.

5-26 Oracle XML DB Developer's Guide



XMLQUERY and XMLTABLE Examples

Function XMLTable breaks up the result of XQuery evaluation, returning it as three
VARCHAR?2 columns of a virtual table: poref, priority, and contact. The DEFAULT
clause is used to supply a default priority of Regular.

In Example 5-12, SQL /XML function XMLTable is used to break up the XML data in
an XMLType collection element, LineItem, into separate columns of a virtual table.

Example 5-12 Decomposing XML Collection Elements into Relational Data using
XMLTABLE

SELECT lines.lineitem, lines.description, lines.partid,
lines.unitprice, lines.quantity
FROM purchaseorder,
XMLTable('for $i in /PurchaseOrder/LineIltems/LineIltem
where $i/@ItemNumber >= 8
and $i/Part/@UnitPrice > 50
and $i/Part/@Quantity > 2

return $i'
PASSING OBJECT_VALUE
COLUMNS lineitem NUMBER PATH '@ItemNumber',
description VARCHAR2 (30) PATH 'Description',
partid NUMBER PATH 'Part/@Id',
unitprice  NUMBER PATH 'Part/@UnitPrice',
quantity NUMBER PATH 'Part/@Quantity') lines;
LINEITEM DESCRIPTION PARTID UNITPRICE QUANTITY
11 Orphic Trilogy 37429148327 80 3
22 Dreyer Box Set 37429158425 80 4
11 Dreyer Box Set 37429158425 80 3
16 Dreyer Box Set 37429158425 80 3
8 Dreyer Box Set 37429158425 80 3
12 Brazil 37429138526 60 3
18 Eisenstein: The Sound Years 37429149126 80 4
24 Dreyer Box Set 37429158425 80 3
14 Dreyer Box Set 37429158425 80 4
10 Brazil 37429138526 60 3
17 Eisenstein: The Sound Years 37429149126 80 3
16 Orphic Trilogy 37429148327 80 4
13 Orphic Trilogy 37429148327 80 4
10 Brazil 37429138526 60 4
12 Eisenstein: The Sound Years 37429149126 80 3
12 Dreyer Box Set 37429158425 80 4
13 Dreyer Box Set 37429158425 80 4

17 rows selected.

See Also:
= Example 5-18 for the execution plan of Example 5-12

= "Breaking Up Multiple Levels of XML Data" on page 3-49, for an
example of applying XMLTable to multiple document levels
(multilevel chaining)

Using Namespaces with XQuery

You can use the XQuery declare namespace declaration in the prolog of an XQuery
expression to define a namespace prefix. You can use declare default namespace
to establish the namespace as the default namespace for the expression.

Using XQuery with Oracle XML DB  5-27



XMLQUERY and XMLTABLE Examples

Be aware of the following pitfall, if you use SQL*Plus: If the semicolon (;) at the end of
a namespace declaration terminates a line, SQL*Plus interprets it as a SQL terminator.
To avoid this, you can do one of the following;:

s Place the text that follows the semicolon on the same line.
s Place a comment, such as (: :), after the semicolon, on the same line.

s Turn off the recognition of the SQL terminator with SQL*Plus command SET
SQLTERMINATOR.

Example 5-13 illustrates use of a namespace declaration in an XQuery expression.

Example 5-13 Using XMLQUERY with a Namespace Declaration

SELECT XMLQuery ('declare namespace e = "http://example.com";
ERROR:
ORA-01756: quoted string not properly terminated

for $1 in doc("/public/empsns.xml")/e:emps/e:emp
SP2-0734: unknown command beginning "for $i in ..." - rest of line ignored.

-- This works - do not end the line with ";".
SELECT XMLQuery ('declare namespace e = "http://example.com"; for
$i in doc("/public/empsns.xml") /e:emps/e:emp
let %4 :=
doc (" /public/depts.xml") //dept [deptno=$i/@deptno]/@dname
where $i/@salary > 100000
order by $i/@empno
return <emp ename="{$i/@ename}" dept="{S$d}"/>'
RETURNING CONTENT) FROM DUAL;

XMLQUERY (' DECLARENAMESPACEE="HTTP: //EXAMPLE.COM" ; FORSIINDOC (" /PUBLIC/EMPSNS.XML"

<emp ename="Jack" dept=""></emp><emp ename="Jill" dept=""></emp>
-- This works too - add a comment after the ";".
SELECT XMLQuery ('declare namespace e = "http://example.com"; (: :)
for $1 in doc("/public/empsns.xml") /e:emps/e:emp
let $d := doc("/public/depts.xml")//dept[deptno=$i/@deptno]/@dname
where $i/@salary > 100000
order by $i/@empno
return <emp ename="{$i/@ename}" dept="{S$d}"/>'
RETURNING CONTENT) FROM DUAL;

XMLQUERY (' DECLARENAMESPACEE="HTTP: //EXAMPLE.COM"; (::) FORSIINDOC ("/PUBLIC/EMPSNS.

<emp ename="Jack" dept=""></emp><emp ename="Jill" dept=""></emp>
1 row selected.

-- This works too - tell SQL*Plus to ignore the ";".
SET SQLTERMINATOR OFF

SELECT XMLQuery ('declare namespace e = "http://example.com";
for $1 in doc("/public/empsns.xml")/e:emps/e:emp
let %4 :=
doc (" /public/depts.xml")//dept [deptno=$i/@deptno]/@dname
where $i/@salary > 100000
order by $i/@empno
return <emp ename="{$i/@ename}" dept="{$d}"/>"

5-28 Oracle XML DB Developer's Guide



Performance Tuning for XQuery

RETURNING CONTENT) FROM DUAL
/

XMLQUERY ( ' DECLARENAMESPACEE="HTTP: //EXAMPLE.COM" ; FORSIINDOC (" /PUBLIC/EMPSNS.XML"

<emp ename="Jack" dept=""></emp><emp ename="Jill" dept=""></emp>

An XQuery namespace declaration has no effect outside of its XQuery expression. To
declare a namespace prefix for use in an XMLTable expression outside of the XQuery
expression, use the XMLNAMESPACES clause. This clause also covers the XQuery
expression argument to XMLTable, eliminating the need for a separate declaration in
the XQuery prolog.

In Example 5-14, XMLNAMESPACES is used to define the prefix e for the namespace
http://example.com. This namespace is used in the COLUMNS clause and the
XQuery expression of the XMLTable expression.

Example 5-14 Using XMLTABLE with the XMLNAMESPACES Clause

SELECT * FROM XMLTable (XMLNAMESPACES ('http://example.com' AS "e"),
'for $i in doc("/public/empsns.xml")
return $i/e:emps/e:emp’
COLUMNS name VARCHAR2 (6) PATH '@ename',
id NUMBER PATH '@empno');

This produces the following result:

NAME ID
John 1
Jack 2
Jill 3

3 rows selected.

It is the presence of qualified names e : ename and e : empno in the COLUMNS clause
that necessitates using the XMLNAMESPACES clause. Otherwise, a prolog namespace
declaration (declare namespace e = "http://example.com")would suffice
for the XQuery expression itself.

Because the same namespace is used throughout the XMLTable expression, a default
namespace could be used: XMLNAMESPACES (DEFAULT
'http://example.com'). The qualified name $i/e:emps/e: emp could then be
written without an explicit prefix: $i/emps/emp.

Performance Tuning for XQuery

A SQL query that involves XQuery expressions can often be rewritten (optimized) in
one or more ways. This optimization is referred to as XML query rewrite or
optimization. XPath expressions are a proper subset of XQuery expressions.

XPath rewrite is a subset of XML query rewrite that involves rewriting queries that
involve XPath expressions. XPath rewrite includes XMLIndex optimizations,
streaming evaluation of binary XML, and rewrite to underlying object-relational or
relational structures in the case of structured storage or XMLType views over relational
data.

Just as query tuning can improve SQL performance, so it can improve XQuery
performance. You tune XQuery performance by choosing appropriate XML storage
models and indexes.

Using XQuery with Oracle XML DB  5-29



Performance Tuning for XQuery

As with database queries generally, you determine whether tuning is required by
examining the execution plan for a query. If the plan is not optimal, then consult the
following documentation for specific tuning information:

s For structured storage: Chapter 8, "XPath Rewrite for Structured Storage"

s For unstructured storage and binary XML storage: Chapter 6, "Indexing XMLIype
Data"

In addition, be aware that the following expressions can be expensive to process, so
they might add performance overhead when processing large volumes of data:

= SQL expressions that use the following Oracle SQL functions, which accept XPath
expression arguments:

— appendChildxXML (use insertChildXMLAfter instead)
— insertXMLAfter (use insertChildXMLAfter instead)
— insertXMLBefore (use insertChildXMLBefore instead)

= XQuery expressions that use the following axes (use forward and descendent axes
instead):

— ancestor

— ancestor-or-self

— descendant-or-self
- following

— following-sibling
— namespace

— parent

— preceding

— preceding-sibling

s XQuery expressions that involve node identity (for example, using the
order-comparison operators << and >>)

See Also: "Oracle XML DB Support for XQuery" on page 5-42

The following sections present the execution plans for some of the examples shown
earlier in this chapter, to indicate how they are executed.

s "XQuery Optimization over Relational Data" on page 5-31: examples with XQuery
expressions that target XML data created on the fly using fn:collection
together with URI scheme oradb.

= "XQuery Optimization over XML Schema-Based XMLIype Data" on page 5-32:
examples with XQuery expressions that target an XML schema-based XMLType
table stored object-relationally

5-30 Oracle XML DB Developer's Guide



Performance Tuning for XQuery

See Also:
s Chapter 8, "XPath Rewrite for Structured Storage"

s Chapter 6, "Indexing XMLType Data" for information about using
XMLIndex

= "How Oracle XML DB Processes XMLIype Methods and SQL
Functions" on page 3-58 for information about streaming
evaluation of binary XML data

Rule-Based and Cost-Based XQuery Optimization

Several competing optimization possibilities can exist for queries with XQuery
expressions, depending on various factors such as the XML Type storage model and
indexing that are used.

By default, Oracle XML DB follows a prioritized set of rules to determine which of the
possible optimizations should be used for any given query and context. This behavior
is referred to as rule-based XML query rewrite.

Alternatively, Oracle XML DB can use cost-based XML query rewrite. In this mode,
Oracle XML DB estimates the performance of the various XML optimization
possibilities for a given query and chooses the combination that is expected to be most
performant.

You can impose cost-based optimization for a given SQL statement by using the
optimizer hint /*+ COST_XML_QUERY_REWRITE */.

XQuery Optimization over Relational Data

PLAN_TABLE_OUTPUT

Plan hash value:

Example 5-15 shows the optimization of XMLQuery over relational data accessed as
XML. Example 5-16 shows the optimization of XML Table in the same context.

Example 5-15 Optimization of XMLQuery over Relational Data

Here again is the query of Example 5-6, together with its execution plan, which shows
that the query has been optimized.

SELECT XMLQuery (
"for $1 in fn:collection("oradb:/OE/WAREHOUSES") /ROW
return <Warehouse id="{$i/WAREHOUSE_ID}">
<Location>
{for $j in fn:collection("oradb:/HR/LOCATIONS") /ROW
where $3/LOCATION_ID eq $i/LOCATION_ID
return ($j/STREET_ADDRESS, $j/CITY, $j/STATE_PROVINCE) }
</Location>
</Warehouse>'
RETURNING CONTENT) FROM DUAL;

3341889589
| Operation | Name | Rows | Bytes | Cost (%CPU)| Time
| SELECT STATEMENT | | 1 | 2 (0)] 00:00:01 |
| SORT AGGREGATE | | 1 41 | | |
| TABLE ACCESS BY INDEX ROWID| LOCATIONS | 1 41 | 1 (0)| 00:00:01 |
| INDEX UNIQUE SCAN | Loc_ID_PK | 1 | 0 (0)| 00:00:01 |
| SORT AGGREGATE | | 1 6 | | |

Using XQuery with Oracle XML DB 5-31



Performance Tuning for XQuery

| 5| TABLE ACCESS FULL | WAREHOUSES | 9 | 54 | 2 (0)] 00:00:01 |
6 | FAST DUAL | | 1 | 2 (0)] 00:00:01 |

3 - access("LOCATION_ID"=:B1)

18 rows selected.

Example 5-16 Optimization of XMLTable over Relational Data

Here again is the query of Example 5-7, together with its execution plan, which shows
that the query has been optimized.

SELECT *
FROM XMLTable (
"for $1 in fn:collection("oradb:/OE/WAREHOUSES") /ROW
return <Warehouse id="{$i/WAREHOUSE_ID}">
<Location>
{for $j in fn:collection("oradb:/HR/LOCATIONS")/ROW
where $3/LOCATION_ID eq $i/LOCATION_ID
return ($j/STREET_ADDRESS, $j/CITY, $j/STATE_PROVINCE)}
</Location>
</Warehouse>"') ;

PLAN_TABLE_OUTPUT

Plan hash value: 1021775546

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | 9 | 54 | 2 (0)| 00:00:01 |
| 1| SORT AGGREGATE | | 1| 41 | | |
| 2 | TABLE ACCESS BY INDEX ROWID| LOCATIONS | 1] 41 | 1 (0)| 00:00:01 |
[* 3] INDEX UNIQUE SCAN | Loc_ID _PK | 1| | (0)| 00:00:01 |
| 4 | TABLE ACCESS FULL | WAREHOUSES | 9 | 54 | 2 (0)] 00:00:01 |

3 - access ("LOCATION_ID"=:Bl)

16 rows selected.

XQuery Optimization over XML Schema-Based XMLType Data

Example 5-17 shows the optimization of XMLQuery over an XML schema-based
XMLType table. Example 5-18 shows the optimization of XMLTable in the same
context.

Example 5-17 Optimization of XMLQuery with Schema-Based XMLType Data

Here again is the query of Example 5-10, together with its execution plan, which
shows that the query has been optimized.

SELECT XMLQuery('for $i in /PurchaseOrder
where $i/CostCenter eq "Al10"
and $i/User eq "SMCCAIN"

5-32 Oracle XML DB Developer's Guide



Performance Tuning for XQuery

return <Al0Opo pono="{$i/Reference}"/>"'
PASSING OBJECT_VALUE
RETURNING CONTENT)
FROM purchaseorder;

PLAN_TABLE_OUTPUT

Plan hash value: 3611789148

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | 1| 530 | 5 (0)| 00:00:01 |
| 1| SORT AGGREGATE | | 1| | | |
|* 2| FILTER | | | | | |
| 3| FAST DUAL | | 1 | 2 (0)| 00:00:01 |
[* 4 | TABLE ACCESS FULL| PURCHASEORDER | 1| 530 | 5 (0)] 00:00:01 |

2 - filter(:B1='SMCCAIN' AND :B2='Al0')

4 - filter (SYS_CHECKACL ("ACLOID", "OWNERID",xmltype ('<privilege
xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.oracle.com/xdb/acl.xsd
http://xmlns.oracle.com/xdb/acl.xsd DAV:http://xmlns.oracle.com/xdb/dav.xsd">
<read-properties/><read-contents/></privilege>'))=1)

22 rows selected.

Example 5-18 Optimization of XMLTable with Schema-Based XMLType Data

Here again is the query of Example 5-12, together with its execution plan, which
shows that the query has been optimized. The XQuery result is never materialized.
Instead, the underlying storage columns for the XML collection element LineItem are
used to generate the overall result set.

SELECT lines.lineitem, lines.description, lines.partid,
lines.unitprice, lines.quantity
FROM purchaseorder,
XMLTable('for $i in /PurchaseOrder/LineIltems/LineIltem
where $i/@ItemNumber >= 8
and $i/Part/@UnitPrice > 50
and $i/Part/@Quantity > 2

return $i'
PASSING OBJECT_VALUE
COLUMNS lineitem NUMBER PATH '@ItemNumber',
description VARCHAR2 (30) PATH 'Description',
partid NUMBER PATH 'Part/@Id',
unitprice  NUMBER PATH 'Part/@UnitPrice',
quantity NUMBER PATH 'Part/@Quantity') lines;
| 1d | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | 4| 384 | 7 (0)| 00:00:01 |
| 1 | NESTED LOOPS | | | | | |
| 2| NESTED LOOPS | | 4 | 384 | 7 (0)] 00:00:01 |
[* 3 | TABLE ACCESS FULL | PURCHASEORDER | 1] 37 | 5 (0)| 00:00:01 |

Using XQuery with Oracle XML DB  5-33



Performance Tuning for XQuery

[* 4 | INDEX RANGE SCAN | sYs_c005478 | 17 | | 1 (0)| 00:00:01 |
5 | TABLE ACCESS BY INDEX ROWID| LINEITEM TABLE | 3 177 | 2 (0)| 00:00:01 |

3 - filter (SYS_CHECKACL ("ACLOID", "OWNERID",xmltype ('<privilege
xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.oracle.com/xdb/acl.xsd
http://xmlns.oracle.com/xdb/acl.xsd

DAV:http://xmlns.oracle.com/xdb/dav.xsd"><read-prop
erties/><read-contents/></privilege>"'))=1)

4 - access ("NESTED_TABLE_ID"="PURCHASEORDER"."SYS_NC0003400035S$")

5 - filter("SYS_NC00013$">50 AND "SYS_NC00012$">2 AND "ITEMNUMBER">=8 AND
"SYS_NC_TYPEIDS" IS NOT NULL)

25 rows selected.

This example traverses table oe .purchaseorder completely. The XMLTable
expression is evaluated for each purchase-order document. It is more efficient to have
the XML Table expression, not the purchaseorder table, drive the SQL-query
execution.

Although the XQuery expression has been rewritten to relational expressions, you can
improve this optimization by creating an index on the underlying relational data—you
can optimize this query in the same way that you would optimize a purely SQL query.
That is always the case with XQuery in Oracle XML DB: the optimization techniques
you use are the same as those you use in SQL.

The UnitPrice attribute of collection element LineItemis an appropriate index
target. The governing XML schema specifies that an ordered collection table (OCT) is
used to store the LineItem elements.

However, the name of this OCT was generated by Oracle XML DB when the XML
purchase-order documents were decomposed as XML schema-based data. Instead of
using table purchaseorder from sample database schema HR, you could manually
create a new purchaseorder table (in a different database schema) with the same
properties and same data, but having OCTs with user-friendly names. Refer to
Example 3-13 on page 3-28 for how to do this.

Assuming that a purchaseorder table has been created as in Example 3-13, the
following statement creates the appropriate index:

CREATE INDEX unitprice_index ON lineitem_ table("PART"."UNITPRICE");
With this index defined, the query of Example 5-12 results in the following execution
plan, which shows that the XML Table expression has driven the overall evaluation.

PLAN_TABLE_OUTPUT

Plan hash value: 1578014525

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

| 0 | SELECT STATEMENT | \ 3] 624 | 8 (0)| 00:00:01 |
| 1| NESTED LOOPS | | 3] 624 | 8 (0)| 00:00:01 |
[* 2| INDEX UNIQUE SCAN| SYS_IOT_TOP_49323 | 3] 564 | 5 (0)| 00:00:01 |
[* 3] INDEX RANGE SCAN| UNITPRICE INDEX | 20 | | 2 (0)] 00:00:01 |
|* 4 | INDEX UNIQUE SCAN| SYS_C004411 | 1 | 0 (0)] 00:00:01 |

5-34 Oracle XML DB Developer's Guide



Performance Tuning for XQuery

2 - access("SYS_NC00013$">50)
filter ("ITEMNUMBER">=8 AND "SYS_NC00012$">2)
3 - access("SYS_NC00013$">50)
4 - access("NESTED_TABLE_ID"="PURCHASEORDER"."SYS_NC0003400035S$")

- dynamic sampling used for this statement

23 rows selected.

Diagnosing XQuery Optimization: XMLOptimizationCheck

You can examine an execution plan for your SQL code to determine whether XQuery
optimization occurs or the plan is instead suboptimal. In the latter case, a note such as
the following appears immediately after the plan:

Unoptimized XML construct detected (enable XMLOptimizationCheck
for more information)

You can also compare the execution plan output with the plan output that you see
after you use the optimizer hint NO_XML_QUERY_REWRITE, which turns off XQuery
optimization.

In addition, you can use the SQL*Plus SET command with system variable
XMLOptimizationCheck to turn on an XML diagnosability mode for SQL:

SET XMLOptimizationCheck ON

When this mode is on, the plan of execution is automatically checked for XQuery
optimization, and if the plan is suboptimal then an error is raised and diagnostic
information is written to the trace file indicating which operators are not rewritten.

The main advantage of XMLOptimizationCheck is that it brings a potential problem
to your attention immediately. For this reason, you might find it preferable to leave it
turned on at all times. Then, if an application change or a database change for some
reason prevents a SQL operation from rewriting, execution is stopped instead of
performance being negatively impacted without your being aware of the cause.

Note:

= You can use event 19027 with level 8192 (0x2000) to dump a trace
that indicates why a particular expression is not rewritten.

s XMLOptimizationCheck was not available prior to Oracle
Database 11g Release 2 (11.2.0.2). Users of older releases directly
manipulated event 19201 to obtain XQuery optimization
information.

See Also: "Turning Off Use of XMLIndex" on page 6-30 for
information about optimizer hint NO_XML_QUERY_REWRITE

Using XQuery with Oracle XML DB  5-35



Performance Tuning for XQuery

Improving Performance for fn:doc and fn:collection on Repository Data

In Oracle XML DB, you can use XQuery functions fn:doc and fn:collection to
reference documents and collections in Oracle XML DB Repository. When repository
XML data is stored object-relationally or as binary XML, queries that use fn:doc and
fn:collection are evaluated functionally; that is, they are not optimized to access
the underlying storage tables directly.

To improve the performance of such queries, you must link them to the actual
database tables that hold the repository data being queried. You can do that in either of
the following ways:

s Join view RESOURCE_VIEW with the XML Type table that holds the data, and then
use the Oracle SQL functions equals_path and under_path instead of the
XQuery functions fn:doc and fn:collection, respectively. These SQL
functions reference repository resources in a performant way.

= Use the Oracle XQuery extension-expression pragma ora:defaultTable.

Both methods have the same effect. Oracle recommends that you use the
ora:defaultTable pragma because it lets you continue to use the XQuery standard
functions fn:doc and fn:collection and it simplifies your code.

These two methods are illustrated in the examples of this section.

Using equals_path and under_path Instead of fn:doc and fn:collection

SQL function equals_path references a resource located at a specified repository
path, and SQL function under_path references a resource located under a specified
repository path. Example 5-19 and Example 5-20 illustrate this for functions fn:doc
and equals_path; functions fn:collection and under_path are treated
similarly.

Example 5-19 Unoptimized Repository Query using fn:doc

SELECT XMLQuery('let $val :=
fn:doc (" /home/OE/PurchaseOrders/2002/Sep/VJONES-20021009123337583PDT.xm1")
/PurchaseOrder/Lineltems/Lineltem[@ItemNumber =19]
return $val' RETURNING CONTENT)
FROM DUAL;

Example 5-20 Optimized Repository Query using EQUALS_PATH

SELECT XMLQuery ('let $val := $SDOC/PurchaseOrder/Lineltems/Lineltem[@ItemNumber = 19]
return S$val' PASSING OBJECT_VALUE AS "DOC" RETURNING CONTENT)
FROM RESOURCE_VIEW rv, purchaseorder p
WHERE ref (p) = XMLCast (XMLQuery ('declare default element namespace
"http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :)
fn:data6(/Resource/XMLRef)' PASSING rv.RES RETURNING CONTENT)
AS REF XMLType)
AND equals_path(rv.RES, '/home/OE/PurchaseOrders/2002/Sep/VJONES-20021009123337583PDT.xml")
=1;

Using Oracle XQuery Pragma ora:defaultTable

Oracle XQuery extension-expression pragma ora:defaultTable lets you specify
the default table used to store repository data that you query. The query is rewritten to
automatically join the default table to view RESOURCE_VIEW and use Oracle SQL

® XQuery function fn:data is used here to atomize its argument, in this case returning the
XMLRef node's typed atomic value.

5-36 Oracle XML DB Developer's Guide



XQuery Static Type-Checking in Oracle XML DB

functions equals_path and under_path instead of XQuery functions fn:doc and
fn:collection, respectively. The effect is thus the same as coding the query
manually to use an explicit join and equals_path or under_path. Example 5-21
illustrates this; the query is rewritten automatically to what is shown in Example 5-20.

Example 5-21 Repository Query using Oracle XQuery Pragma ora:defaultTable

SELECT XMLQuery ('for $doc in (#ora:defaultTable PURCHASEORDER #)
{fn:doc (" /home/OE/PurchaseOrders/2002/Sep/VIONES-20021009123337583PDT.xm1") }
let $val := $doc/PurchaseOrder/Lineltems/Lineltem[@ItemNumber = 19]
return Sval}'
RETURNING CONTENT)
FROM DUAL;

For clarity of scope Oracle recommends that you apply pragma ora:defaultTable
directly to the relevant document or collection expression, fn:doc or
fn:collection, rather than to a larger expression.

XQuery Static Type-Checking in Oracle XML DB

Oracle XML DB type-checks all XQuery expressions. Doing this at run time can be
costly, however. As an optimization technique, whenever there is sufficient static type
information available for a given query at compile time, Oracle XML DB performs
static (compile time) type-checking of that query. Whenever sufficient static type
information is not available for a given query at compile time, Oracle XML DB uses
dynamic (run-time) type checking for that query.

Static type-checking can save execution time by raising errors at compile time. Static
type-checking errors include both data-type errors and the use of XPath expressions
that are invalid with respect to an XML schema.

Typical ways of providing sufficient static type information at query compile time
include the following:

s Using XQuery with fn:doc or fn:collection over relational data.

= Using XQuery to query an XMLType table, column, or view whose XML Schema
information is available at query compile time.

This section presents examples that demonstrate the utility of static type-checking and
the use of these two means of communicating type information.

The XML data produced on the fly by fn:collection together with URI scheme
oradb has ROW as its top-level element, but the query of Example 5-22 incorrectly
lacks that ROW wrapper element. This omission raises a query compile-time error.
Forgetting that fn: collection with oradb wraps relational data in this way is an
easy mistake to make, and one that could be difficult to diagnose without static
type-checking. Example 5-5 shows the correct code.

Example 5-22 Static Type-Checking of XQuery Expressions: oradb URI scheme

-- This produces a static-type-check error, because "ROW" is missing.
SELECT XMLQuery('for $i in fn:collection("oradb:/HR/REGIONS"),
$j in fn:collection("oradb:/HR/COUNTRIES")
where $i/REGION_ID = $j/REGION_ID and $i/REGION_NAME = "Asia"
return $j'
RETURNING CONTENT) AS asian_countries
FROM DUAL;

SELECT XMLQuery ('for $i in fn:collection("oradb:/HR/REGIONS"),
*
ERROR at line 1:
ORA-19276: XPST0005 - XPath step specifies an invalid element/attribute name:

Using XQuery with Oracle XML DB  5-37



SQL*Plus XQUERY Command

(REGION_ID)

In Example 5-23, XQuery static type-checking finds a mismatch between an XPath
expression and its target XML schema-based data. Element CostCenter is misspelled
here as costcenter (XQuery and XPath are case-sensitive). Example 5-11 shows the
correct code.

Example 5-23 Static Type-Checking of XQuery Expressions: Schema-Based XML

-- This results in a static-type-check error: CostCenter is not the right case.
SELECT xtab.poref, xtab.usr, xtab.requestor
FROM purchaseorder,
XMLTable ('for $i in /PurchaseOrder where $i/costcenter eqg "AlQ" return S$i'
PASSING OBJECT VALUE
COLUMNS poref VARCHAR2 (20) PATH 'Reference’,
usr VARCHAR2 (20) PATH 'User' DEFAULT 'Unknown',
requestor VARCHAR2 (20) PATH 'Requestor') xtab;
FROM purchaseorder,

*
ERROR at line 2:
ORA-19276: XPST0005 - XPath step specifies an invalid element/attribute name:
(costcenter)

SQL*Plus XQUERY Command

Example 5-24 shows how you can enter an XQuery expression directly at the
SQL*Plus command line, by preceding the expression with the SQL*Plus command
XQUERY and following it with a slash (/) on a line by itself. Oracle Database treats
XQuery expressions submitted with this command the same way it treats XQuery
expressions in SQL/XML functions XMLQuery and XMLTable. Execution is identical,
with the same optimizations.

Example 5-24 Using the SQL*Plus XQUERY Command
SQL> XQUERY for $i in fn:collection("oradb:/HR/DEPARTMENTS")
2 where $i/ROW/DEPARTMENT_ID < 50

3 return $i
4 /

Result Sequence

<ROW><DEPARTMENT_ID>10</DEPARTMENT ID><DEPARTMENT NAME>Administration</DEPARTMEN
T_NAME><MANAGER_ID>200</MANAGER_ID><LOCATION_ID>1700</LOCATION_ID></ROW>

<ROW><DEPARTMENT ID>20</DEPARTMENT ID><DEPARTMENT NAME>Marketing</DEPARTMENT_NAM
E><MANAGER_ID>201</MANAGER_ID><LOCATION_ID>1800</LOCATION_ID></ROW>

<ROW><DEPARTMENT ID>30</DEPARTMENT ID><DEPARTMENT NAME>Purchasing</DEPARTMENT_NA
ME><MANAGER_ID>114</MANAGER_ID><LOCATION_ID>1700</LOCATION_ID></ROW>

<ROW><DEPARTMENT ID>40</DEPARTMENT ID><DEPARTMENT NAME>Human Resources</DEPARTME
NT_NAME><MANAGER_ID>203</MANAGER_ID><LOCATION_ID>2400</LOCATION_ID></ROW>

There are also a few SQL*Plus SET commands that you can use for settings that are
specific to XQuery. Use SHOW XQUERY to see the current settings.

= SET XQUERY BASEURI - Set the base URI for XQUERY. URIs in XQuery
expressions are relative to this URL

5-38 Oracle XML DB Developer's Guide



Using XQuery with PL/SQL, JDBC, and ODP.NET

= SET XQUERY CONTEXT — Specify a context item for subsequent XQUERY
evaluations.

See Also: SQL*Plus User’s Guide and Reference

Using XQuery with PL/SQL, JDBC, and ODP.NET

Previous sections in this chapter have shown how to invoke XQuery from SQL. This
section provides examples of using XQuery with the Oracle APIs for PL/SQL, JDBC,
and Oracle Data Provider for NET (ODP.NET).

Example 5-25 shows how to use XQuery with PL/SQL, in particular, how to bind
dynamic variables to an XQuery expression using the XMLQuery PASSING clause. The
bind variables : 1 and : 2 are bound to the PL/SQL bind arguments nbitems and
partid, respectively. These are then passed to XQuery as XQuery variables itemno
and id, respectively.

Example 5-25 Using XQuery with PL/SQL

DECLARE
sql_stmt VARCHAR2

(2000); -- Dynamic SQL statement to execute
nbitems NUMBER := 3;
(20

; -- Number of items
):= '715515009058'; -- Part ID

partid  VARCHAR2
result XMLType;
doc DBMS_ XMLDOM . DOMDocument ;
ndoc DBMS_XMLDOM. DOMNode ;
buf VARCHAR2 (20000) ;
BEGIN
sql_stmt :=

'SELECT XMLQuery (
‘'for $i in fn:collection("oradb:/OE/PURCHASEORDER") ' ||
'where count ($i/PurchaseOrder/LineItems/Lineltem) = $itemno ' ||
'and $i/PurchaseOrder/Lineltems/Lineltem/Part/@Id = $id ' ||
'return $i/PurchaseOrder/Lineltems'' ' ||
'PASSING :1 AS "itemmno", :2 AS "id" ' ||
'RETURNING CONTENT) FROM DUAL';

EXECUTE IMMEDIATE sqgl_stmt INTO result USING nbitems, partid;
doc := DBMS_XMLDOM.newDOMDocument (result) ;
ndoc := DBMS_XMLDOM.makeNode (doc) ;
DBMS_XMLDOM.writeToBuffer (ndoc, buf);
DBMS_OUTPUT.put_line (buf) ;

END;

/

This produces the following output:

<LineItems>
<LineItem ItemNumber="1">
<Description>Samurai 2: Duel at Ichijoji Temple</Description>
<Part Id="37429125526" UnitPrice="29.95" Quantity="3"/>
</Lineltem>
<LineIltem ItemNumber="2">
<Description>The Red Shoes</Description>
<Part Id="37429128220" UnitPrice="39.95" Quantity="4"/>
</Lineltem>
<LineItem ItemNumber="3">
<Description>A Night to Remember</Description>
<Part Id="715515009058" UnitPrice="39.95" Quantity="1"/>
</Lineltem>

Using XQuery with Oracle XML DB 5-39



Using XQuery with PL/SQL, JDBC, and ODP.NET

</Lineltems>
<Lineltems>
<LineItem ItemNumber="1">
<Description>A Night to Remember</Description>
<Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</LineItem>
<LineIltem ItemNumber="2">
<Description>The Unbearable Lightness Of Being</Description>
<Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
</Lineltem>
<LineIltem ItemNumber="3">
<Description>Sisters</Description>
<Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
</Lineltem>
</LinelItems>

PL/SQL procedure successfully completed.

Example 5-26 shows how to use XQuery with JDBC, binding variables by position
with the PASSING clause of SQL/XML function XMLTable.

Example 5-26 Using XQuery with JDBC

import java.sqgl.*;

import oracle.sqgl.*;
import oracle.jdbc.*;
import oracle.xdb.XMLType;
import java.util.*;

public class QueryBindByPos

{

public static void main(String[] args) throws Exception, SQLException

{

System.out.println("*** JDBC Access of XQuery using Bind Variables ***");
DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());
OracleConnection conn
= (OracleConnection)
DriverManager.getConnection ("jdbc:oracle:oci8:@localhost:1521:0rallgR1l", "oe", "oe");
String xgString
= "SELECT COLUMN_VALUE" +
"FROM XMLTable('for $i in fn:collection(\"oradb:/OE/PURCHASEORDER\") " +
"where $i/PurchaseOrder/Reference= $ref " +
"return $i/PurchaseOrder/Lineltems' " +
"PASSING ? AS \"ref\")";
OraclePreparedStatement stmt = (OraclePreparedStatement)conn.prepareStatement (xgString);
String refString = "EABEL-20021009123336251PDT"; // Set the filter value
stmt.setString(l, refString); // Bind the string
ResultSet rs = stmt.executeQuery();
while (rs.next())

{
XMLType desc = (XMLType) rs.getObject(l);
System.out.println("LineItem Description: " + desc.getStringVal());
desc.close();

}

rs.close();

stmt.close() ;

This produces the following output:

*** JDBC Access of Database XQuery with Bind Variables ***

5-40 Oracle XML DB Developer's Guide



Using XQuery with PL/SQL, JDBC, and ODP.NET

Lineltem Description: Samurai 2: Duel at Ichijoji Temple
LinelItem Description: The Red Shoes
LineItem Description: A Night to Remember

Example 5-27 shows how to use XQuery with ODP.NET and the C# language. The C#
input parameters :nbitems and :partid are passed to XQuery as XQuery variables
itemno and id, respectively.

Example 5-27 Using XQuery with ODP.NET and C#

using System;

using System.Data;

using System.Text;

using System.IO;

using System.Xml;

using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

namespace XQuery
{
/// <summary>
/// Demonstrates how to bind variables for XQuery calls
/// </summary>
class XQuery
{
/// <summary>
/// The main entry point for the application.
/// </summary>
static void Main(string[] args)
{
int rows = 0;
StreamReader sr = null;

// Create the connection.

string constr = "User Id=oe;Password=*********x%.Data Source=orallgr2"; // Replace with real password.
OracleConnection con = new OracleConnection(constr);
con.Open() ;

// Create the command.
OracleCommand cmd = new OracleCommand("", con);

// Set the XML command type to query.
cmd . CommandType = CommandType.Text;

// Create the SQL query with the XQuery expression.

StringBuilder blr = new StringBuilder();

blr.Append("SELECT COLUMN_VALUE FROM XMLTable");

blr.Append (" (\'for $i in fn:collection(\"oradb:/OE/PURCHASEORDER\") ");

blr.Append (" where count ($i/PurchaseOrder/Lineltems/Lineltem) = $itemno ");
blr.Append (" and $i/PurchaseOrder/Lineltems/Lineltem/Part/@Id = $id ");
blr.Append (" return $i/PurchaseOrder/Lineltems\' ");

blr.Append(" PASSING :nbitems AS \"itemno\", :partid AS \"id\")");

cmd. CommandText = blr.ToString();

cmd. Parameters.Add (" :nbitems", OracleDbType.Intl6, 3, ParameterDirection.Input);

cmd. Parameters.Add (" :partid", OracleDbType.Varchar2, "715515009058", ParameterDirection.Input);
// Get the XML document as an XmlReader.

OracleDataReader dr = cmd.ExecuteReader () ;

dr.Read() ;

// Get the XMLType column as an OracleXmlType
OracleXmlType xml = dr.GetOracleXmlType(0);

// Print the XML data in the OracleXmlType object

Using XQuery with Oracle XML DB  5-41



Oracle XML DB Support for XQuery

Console.WriteLine (xml.Value);
xml.Dispose() ;

// Clean up.
cmd.Dispose() ;
con.Close() ;
con.Dispose() ;

This produces the following output:

<LineItems>
<LineItem ItemNumber="1">
<Description>Samurai 2: Duel at Ichijoji Temple</Description>
<Part Id="37429125526" UnitPrice="29.95" Quantity="3"/>
</LineItem>
<LineItem ItemNumber="2">
<Description>The Red Shoes</Description>
<Part Id="37429128220" UnitPrice="39.95" Quantity="4"/>
</LineIltem>
<LineItem ItemNumber="3">
<Description>A Night to Remember</Description>
<Part Id="715515009058" UnitPrice="39.95" Quantity="1"/>
</LineItem>
</LineIltems>

See Also:
s Chapter 13, "PL/SQL APIs for XMLType"
»  Chapter 15, "Java DOM API for XMLType"

s Chapter 17, "Using Oracle Data Provider for .NET with Oracle
XML DB"

Oracle XML DB Support for XQuery

This section describes Oracle XML DB for the XQuery language.

Support for XQuery and SQL

Support for the XQuery language in Oracle XML DB is designed to provide the best fit
between the worlds of relational storage and querying XML data. That is, Oracle
XML DB is a general XQuery implementation, but it is in addition specifically

designed to make relational and XQuery queries work well together.

The specific properties of the Oracle XML DB XQuery implementation are described in
this section. The XQuery standard explicitly calls out certain aspects of the language
processing as implementation-defined or implementation-dependent. There are also
some features that are specified by the XQuery standard but are not supported by

Oracle XML DB.

Implementation Choices Specified in the XQuery Standard

The XQuery specification specifies that each of the following aspects of language

processing is to be defined by the implementation.

s Implicit time zone support — In Oracle XML DB, the implicit time zone is always
assumed to be 7, and instances of xs : date, xs: time, and xs : datetime that are

missing time zones are automatically converted to UTC.

5-42 Oracle XML DB Developer's Guide



Oracle XML DB Support for XQuery

XQuery Features Not Supported by Oracle XML DB
The following features specified by the XQuery standard are not supported by Oracle
XML DB:

»  Copy-namespace mode — Oracle XML DB supports only preserve and inherit for
a copy-namespaces declaration. If an existing element node is copied by an
element constructor or a document constructor, all in-scope namespaces of the
original element are retained in the copy. Otherwise, the copied node inherits all
in-scope namespaces of the constructed node. An error is raised if you specify
no-preserve or no-inherit.

n  Version encoding — Oracle XML DB does not support an optional encoding
declaration in a version declaration. That is, you cannot include (encoding
an-encoding) in a declaration xquery version a-version;.In particular,
you cannot specify an encoding used in the query. An error is raised if you include
an encoding declaration.

»  xml:id — Oracle XML DB does not support use of xml: id. If you use xml : 14, then
an error is raised.

= XQuery prolog default-collation declaration.
= XQuery prolog boundary-space declaration.

= XQuery data type xs : duration. Use either xs:yearMonthDuration or
xs:DayTimeDuration instead.

XQuery Optional Features

The following optional features specified by the XQuery standard are not supported
by Oracle XML DB:

» Schema Validation Feature

s Module Feature

Support for XQuery Functions and Operators

Oracle XML DB supports all of the XQuery functions and operators included in the
latest XQuery 1.0 and XPath 2.0 Functions and Operators specification, with the following
exceptions. There is no support for the following:

»  The XQuery regular-expression functions: fn:matches, fn:replace, and
fn:tokenize. Use Oracle XQuery functions ora:matches, ora:replace, and
ora: tokenize instead, respectively.

s Functions fn:idand fn:idref.
s Function fn:collection without arguments.

= Optional collation parameters for XQuery functions.

XQuery Functions fn:doc, fn:collection, and fn:doc-available

Oracle XML DB supports XQuery functions fn:doc, fn:collection, and
fn:doc-available for all resources in Oracle XML DB Repository.

Function £n: doc returns the repository file resource that is targeted by its URI
argument; it must be a file of well-formed XML data. Function fn:collectionis
similar, but works on repository folder resources (each file in the folder must contain
well-formed XML data).

Using XQuery with Oracle XML DB  5-43



Oracle XML DB Support for XQuery

When used with Oracle URI scheme oradb, fn:collection can return XML data
derived on the fly from existing relational data that is not in the repository.

XQuery function fn:collection raises an error when used with URI scheme
oradb, if its targeted table or view, or a targeted column, does not exist. Functions
fn:doc and fn:collection do not raise an error if the repository resource passed
as argument is not found. Instead, they return an empty sequence.

You can determine whether a given document exists using XQuery function
fn:doc-available. It returns true if its document argument exists, false if not.

See Also: http://www.w3.org for the definitions of XQuery
functions and operators

5-44 Oracle XML DB Developer's Guide



6

Indexing XMLType Data

You can create indexes on your XML data, to focus on particular parts of it that you
query often and thus improve performance. This chapter includes guidelines for doing
this. It describes various ways that you can index XMLType data, whether
schema-based or non-schema-based, and regardless of the XMLType storage model
you use (binary XML, unstructured, hybrid, or structured).

This chapter contains these topics:

s Oracle XML DB Tasks Involving Indexes

s Overview of Indexing XMLIype Data

s Indexing XMLIype Data Stored Object-Relationally
s XMLIndex

»  Oracle Text Indexes on XML Data

Note: The execution plans shown here are for illustration only. If you
run the examples presented here in your environment then your
execution plans might not be identical.

See Also:
»  Oracle Database Concepts for an overview of indexing

»  Oracle Database Advanced Application Developer’s Guide for
information about using indexes in application development

Oracle XML DB Tasks Involving Indexes

Table 6-1 identifies the documentation for some basic user tasks involving indexes for
XML data.

Indexing XMLType Data 6-1



Oracle XML DB Tasks Involving Indexes

Table 6—1 Basic XML Indexing Tasks

For information about how to...

See...

Index XMLType data stored object-relationally

Create, drop, or rename an XMLIndex index

Obtain the name of an XMLIndex index for a given table or column

Determine whether a given XMLIndex index is used in evaluating a
query

Turn off use of an XMLIndex index

"Indexing XMLType Data Stored
Object-Relationally" on page 6-6,
"Guideline: Create indexes on ordered
collection tables" on page 8-6

Example 6-6 on page 6-18, Example 6-8 on
page 6-18

Example 6-7 on page 6-18

"How to Tell Whether XMLIndex is Used"
on page 6-25

"Turning Off Use of XMLIndex" on
page 6-30

Table 6-2 identifies the documentation for some user tasks involving XMLIndex

indexes that have a structured component.

Table 6-2 Tasks Involving XMLIndex Indexes with a Structured Component

For information about how to...

See...

Create an XMLIndex index with a structured component

Drop the structured component of an XML Index index (drop all
structure groups)

Ensure data type correspondence between a query and an XMLIndex
index with a structured component

Create a B-tree index on a content table of an XMLIndex structured
component

Create an Oracle Text CONTEXT index on a content table of an
XMLIndex structured component

Example 6-20 on page 6-23, Example 6-24
on page 6-24

Example 6-21 on page 6-24
"Data Type Considerations for XMLIndex
Structured Component" on page 6-11

Example 6-22 on page 6-24

Example 6-23 on page 6-24

Table 6-3 identifies the documentation for some user tasks involving XMLIndex

indexes that have an unstructured component.

Table 6-3 Tasks Involving XMLIndex Indexes with an Unstructured Component

For information about how to...

See...

Create an XMLIndex index with an unstructured component

Drop the unstructured component of an XMLIndex index (drop the
path table)

Name the path table when creating an XMLIndex index
Specify storage options when creating an XMLIndex index

Show all existing secondary indexes on an XMLIndex path table
Obtain the name of a path table for an XMLIndex index

Obtain the name of an XMLIndex index with an unstructured
component, given its path table

6-2 Oracle XML DB Developer's Guide

Example 6-9 on page 6-19, Example 6-11
on page 6-20, Example 6-31 on page 6-31,
Example 6-33 on page 6-32, Example 6-34
on page 6-34, Example 6-35 on page 6-35,
Example 6-36 on page 6-36

Example 612 on page 6-20

Example 6-9 on page 6-19
Example 6-11 on page 6-20

Example 6-13 on page 6-20, Example 6-19
on page 6-22

Example 6-10 on page 6-19
Example 6-26 on page 6-27



Overview of Indexing XMLType Data

Table 6-3 (Cont.) Tasks Involving XMLIndex Indexes with an Unstructured Component

For information about how to...

See...

Create a secondary index on an XMLIndex path table

Obtain information about all of the secondary indexes on an
XMLIndex path table

Create a function-based index on a path-table VALUE column

Create a numeric index on a path-table VALUE column

Create a date index on a path-table VALUE column

Create an Oracle Text CONTEXT index on a path-table VALUE column

Exclude or include particular XPath expressions from use by an
XMLIndex index

Specify namespace prefixes for XPath expressions used for
XMLIndex

Exclude or include particular XPath expressions from use by an
XMLIndex index

Specify namespace prefixes for XPath expressions used for
XMLIndex

"Using XMLIndex with an Unstructured
Component" on page 6-19

Example 619 on page 6-22

Example 614 on page 6-21
Example 6-16 on page 6-21
Example 617 on page 6-21
Example 6-18 on page 6-22

"XMLIndex Path Subsetting: Specifying the
Paths You Want to Index" on page 6-30

"XMLIndex Path Subsetting: Specifying the
Paths You Want to Index" on page 6-30

"XMLIndex Path Subsetting: Specifying the
Paths You Want to Index" on page 6-30

"XMLIndex Path Subsetting: Specifying the
Paths You Want to Index" on page 6-30

Table 64 identifies the documentation for some other user tasks involving XMLIndex

indexes.

Table 6—4 Miscellaneous Tasks Involving XMLIndex Indexes

For information about how to...

See...

Specify that an XML Index index should be created and maintained
using parallel processes

Change the parallelism of an XML Index path table to tune index
performance

Schedule maintenance for an XMLIndex index
Manually synchronize an XMLIndex index and its base table

Collect statistics on a table or index for the cost-based optimizer
Create an Oracle Text CONTEXT index

Create an Oracle Text CONTEXT index on a content table of an
XMLIndex structured component

Use an Oracle Text CONTEXT index for full-text search of XML data

Show whether an Oracle Text CONTEXT index is used in a query

"XMLIndex Partitioning and Parallelism"
on page 6-34

"XMLIndex Partitioning and Parallelism"
on page 6-34

"Asynchronous (Deferred) Maintenance of
XMLIndex Indexes" on page 6-35

"Asynchronous (Deferred) Maintenance of
XMLIndex Indexes" on page 6-35

Example 6-38 on page 6-37
Example 6-39 on page 6-46
Example 6-23 on page 6-24

Example 640 on page 6-46
Example 6-40 on page 6-46

Overview of Indexing XMLType Data

Database indexes improve performance by providing faster access to table data. The
use of indexes is particularly recommended for online transaction processing (OLTP)

environments involving few updates.

The principle way you index XML data is using XMLIndex. You can also use Oracle
Text CONTEXT indexes to supplement the use of XML Index.

Indexing XMLType Data 6-3



Overview of Indexing XMLType Data

XMLIndex Addresses the Fine-Grained Structure of XML Data

You can create indexes on one or more table columns, or on a functional expression.
XML data, however, has its own, fine-grained structure, which is not necessarily
reflected in the structure of the database tables used to store it. For this reason,
effectively indexing XML data can be a bit different from indexing most database data.

For structured XML storage, XML objects such as elements and attributes correspond
to object-relational columns and tables, so creating B-tree indexes on those columns and
tables provides an excellent way to effectively index the corresponding XML objects.
Here, the storage model directly reflects the fine-grained structure of the XML data, so
there is no special problem for indexing structured XML data. See "Indexing XMLType
Data Stored Object-Relationally" on page 6-6.

For unstructured, hybrid, and binary XML storage models, indexing a database
column using the standard sorts of index (B-tree, bitmap) is generally not helpful for
accessing particular parts of an XML document. If an XMLType column that contains
an XML document is stored as a CLOB instance, then the details within that document
are inaccessible to the column index—the entire document acts as a single unit as far
as the column index is concerned. In hybrid storage, part of an XML document is
broken up and stored object-relationally (structured storage), but one or more XML
fragments are stored as CLOB instances (unstructured storage). A typical use case here
is mapping an XML-schema complexType or a complex element to CLOB storage,
because the entire fragment is generally accessed as a unit. For standard indexes, it
acts as a unit for indexing as well.

XMLIndex provides a general, XML-specific index that indexes the internal structure
of XML data. One of its main purposes is to overcome the indexing limitation
presented by unstructured, hybrid, and binary XML storage.

= An XMLIndex index with an unstructured component indexes the XML tags of your
document and identifies document fragments based on XPath expressions that
target them. It can also index scalar node values, to provide quick lookup based on
individual values or ranges of values. It also records document hierarchy
information for each node it indexes: relations parent—child, ancestor-descendant,
and sibling. This index component is particularly useful for queries that extract
XML fragments from documents that have little or variable structure.

= An XMLIndex index with a structured component indexes highly structured and
predictable parts of XML data that is nevertheless for the most part unstructured.
This index component is particularly useful for queries that project and use such
islands of structured content.

See Also: "XMLIndex" on page 6-7

Oracle Text Indexes

Besides accessing XML nodes such as elements and attributes, it is sometimes
important to provide fast access to particular passages of text within XML text nodes.
This is the purpose of Oracle Text indexes: they index full-text strings. An Oracle Text
CONTEXT index enables Oracle SQL function contains for full-text search over XML.
With structured storage, XPath rewrite can often rewrite queries that use XPath
function ora: contains to queries that use SQL function contains, so in those cases
too an Oracle Text index can be employed.

Full-text indexing is particularly useful for document-centric applications, which often
contain a mix of XML elements and text-node content. Full-text searching can often be
made more powerful, more focused, by combining it with structural XML searching,

6-4 Oracle XML DB Developer's Guide



Overview of Indexing XMLType Data

that is, by restricting it to certain parts of an XML document, which are identified by
using XPath expressions.

See Also: "Oracle Text Indexes on XML Data" on page 6-46

Optimization Chooses the Right Indexes to Use

Which indexes are used when more than one might apply in a given case? Cost-based
optimization determines the index or indexes to use, so that performance is
maximized. Oracle Text indexes apply only to text, which, for XML data, means text
nodes. Whenever text nodes are targeted and a corresponding Oracle Text index is
defined, it is used. If other indexes are also appropriate in a particular context, then
they can be used as well. However, just because an index is defined and it might
appear applicable in a given situation does not mean that it will be used—it will not
be used if the cost-based optimizer deems that its use is not cost-effective.

Deprecated Indexes for XML Data

In releases prior to Oracle Database 11g Release 1 (11.1), CTXXPath indexes were
sometimes appropriate for use with XMLType data. In releases prior to Oracle
Database 11g Release 2 (11.2), function-based indexes were sometimes appropriate for
use with XML Type data. These indexing methods are no longer recommended for use
with XMLType data.

Function-Based Indexes

In releases prior to Oracle Database 11g Release 2 (11.2), function-based indexes were
sometimes appropriate for use with XMLType data when an XPath expression targeted
a singleton node. Oracle recommends that you use the structured component of
XMLIndex instead. Doing so obviates the overhead associated with maintenance
operations on function-based indexes, and it increases the number of situations in
which the optimizer can correctly select the index. No changes to existing DML
statements are required as a result of this.

It continues to be the case that, for structured storage, defining an index for
(deprecated) Oracle SQL function extractValue often leads, by XPath rewrite, to
automatic creation of B-tree indexes on the underlying objects (instead of a
function-based index on extractValue). The XPath target here must be a singleton
element or attribute. A similar shortcut exists for XMLCast applied to XMLQuery.

See Also:

s "Indexing XMLType Data Stored Object-Relationally” on page 6-6
s "XMLIndex Structured Component" on page 6-10

CTXXPath Indexes

Another type of index that is available for indexing XML data, CTXXPath, is
deprecated, starting with Oracle Database 11g Release 1 (11.1). It has been superseded
by XMLIndex, and it is made available only for use with older database releases. It cannot
help in extracting an XML fragment, and it acts only as a preliminary filter for equality
predicates; after such filtering, XPath expressions are evaluated functionally (that is,
without the benefit of XPath rewrite).

Indexing XMLType Data 6-5



Indexing XMLType Data Stored Object-Relationally

Note: CTXSYS.CTXXPath indexing was deprecated in Oracle
Database 11g Release 1 (11.1). The functionality that was provided by
CTXXPath is now provided by XMLIndex.

Oracle recommends that you replace CTXXPath indexes with
XMLIndex indexes. The intention is that CTXXPath will no longer be
supported in a future release of the database.

Indexing XMLType Data Stored Object-Relationally

You can effectively index XML data that is stored object-relationally (structured
storage) by creating B-tree indexes on the underlying database columns that
correspond to XML nodes.

If the data to be indexed is a singleton, that is, if it can occur only once in any XML
instance document, then you can use a shortcut of ostensibly creating a function-based
index, where the expression defining the index is a functional application, with an
XPath-expression argument that targets the singleton data. A shortcut is defined for
XMLCast applied to XMLQuery, and another shortcut is defined for (deprecated)
Oracle SQL function extractvValue.

In many cases, Oracle XML DB then automatically creates appropriate indexes on the
underlying object-relational tables or columns; it does not create a function-based
index on the targeted XMLType data as the CREATE INDEX statement would suggest.

In the case of the extractValue shortcut, the index created is a B-tree index. In the
case of XMLCast applied to XMLQuery, the index created is a function-based index on
the scalar value resulting from the functional expression. "Indexing Non-Repeating
text() Nodes or Attribute Values" describes this.

If the data to be indexed is a collection, then you cannot use such a shortcut; you must
create the B-tree indexes manually. "Indexing Repeating (Collection) Elements" on
page 6-7 describes this.

Indexing Non-Repeating text() Nodes or Attribute Values

Table purchaseorder in sample database schema OE is stored object-relationally.
Each purchase-order document has a single Reference element; this element is a
singleton. You can thus use a shortcut to create an index on the underlying
object-relational data.

Example 6-1 shows a CREATE INDEX statement that ostensibly tries to create a
function-based index using XMLCast applied to XMLQuery, targeting the text content
of element Reference. (The content of this element is only text, so targeting the
element is the same as targeting its text node using node test text ().)

Example 6-2 ostensibly tries to create a function-based index using (deprecated)
Oracle SQL function extractValue, targeting the same data.

Example 6-1 CREATE INDEX using XMLCAST and XMLQUERY on a Singleton Element

CREATE INDEX po_reference_ix ON purchaseorder
(XMLCast (XMLQuery ('Sp/PurchaseOrder/Reference' PASSING po.OBJECT_VALUE AS "p"
RETURNING CONTENT)
AS VARCHAR2(128)));

Example 6-2 CREATE INDEX using EXTRACTVALUE on a Singleton Element
CREATE INDEX po_reference_ix ON purchaseorder

6-6 Oracle XML DB Developer's Guide



XMLIndex

(extractValue (OBJECT_VALUE, '/PurchaseOrder/Reference'));

In reality, in both Example 6-1 and Example 6-2 no function-based index is created on
the targeted XMLType data. Instead, Oracle XML DB rewrites the CREATE INDEX
statements to create indexes on the underlying scalar data.

See Also: Example 84 and Example 8-5 on page 8-5 for information
about XPath rewrite as it applies to such CREATE INDEX statements

In some cases when you use either of these shortcuts, the CREATE INDEX statement is
not able to create an index on the underlying scalar data as described, and it instead
actually does create a function-based index on the referenced XMLType data. (This is
so, even if the value of the index might be a scalar.)

If this happens, drop the index, and create instead an XMLIndex index with a
structured component that targets the same XPath. As a general rule, Oracle
recommends against using a function-based index on XMLType data.

This is an instance of a general rule for XMLType data, regardless of the storage
method used: Use an XMLIndex with a structured component instead of a
function-based index. This rule applies starting with Oracle Database 11g Release 2
(11.2). Respecting this rule obviates the overhead associated with maintenance
operations on function-based indexes, and it can increase the number of situations in
which the optimizer can correctly select the index.

See Also: "Function-Based Indexes" on page 6-5

Indexing Repeating (Collection) Elements

XMLIndex

In structured storage, a collection is stored as an ordered collection table (OCT) of an
XMLType instance, which means that you can directly access its members. Because the
structured storage model directly reflects the fine-grained structure of the XML data,
you can create indexes that target individual collection members.

You must create such indexes manually. The special feature of automatically creating
B-tree indexes when you ostensibly create a function-based index for (deprecated)
Oracle SQL function extractValue does not apply to collections (the XPath
expression passed to extractValue must target a singleton).

To create B-tree indexes for a collection, you must understand the structure of the SQL
object that is used to manage the collection. Given this information, you can use
conventional object-relational SQL code to created the indexes directly on the
appropriate SQL-object attributes. Refer to "Guideline: Create indexes on ordered
collection tables" on page 8-6 for an example of how to do this.

This section contains these topics:

= Advantages of XMLIndex

s Structured and Unstructured XMLIndex Components

s XMLIndex Structured Component

s XMLIndex Unstructured Component

s Creating, Dropping, Altering, and Examining an XMLIndex Index
s Using XMLIndex with an Unstructured Component

Indexing XMLType Data 6-7



XMLIndex

s Using XMLIndex with a Structured Component

= How to Tell Whether XMLIndex is Used

s Turning Off Use of XMLIndex

s XMLIndex Path Subsetting: Specifying the Paths You Want to Index
s Guidelines for Using XMLIndex with an Unstructured Component
s Guidelines for Using XMLIndex with a Structured Component

s XMLIndex Partitioning and Parallelism

= Asynchronous (Deferred) Maintenance of XMLIndex Indexes

s Collecting Statistics on XMLIndex Objects for the Cost-Based Optimizer
s Data Dictionary Static Public Views Related to XMLIndex

s PARAMETERS Clause for CREATE INDEX and ALTER INDEX

B-tree indexes can be used advantageously with structured (object-relational)
storage—they provide sharp focus by targeting the underlying objects directly. They
are generally ineffective, however, in addressing the detailed structure (elements and
attributes) of an XML document stored using binary XML or CLOB storage, or of an
XML fragment stored in a CLOB instance embedded in object-relational storage. That is
the special domain of XMLIndex: unstructured and hybrid storage.

One typical use case for XMLIndex is where you generally expect to access certain
portions of a document in their entirety, so you pack those portions into one or more
CLOB instances. You might nevertheless sometimes need to query within these
document portions. XMLIndex can help here.

Another use case is where an XML schema contains xsd : any elements, for lack of any
specific knowledge of the document structure and data types involved. The data
corresponding to these elements is stored in CLOB instances, and XMLIndex can be
used to speed access to it.

Advantages of XMLIndex

XMLIndex is a domain index; it is designed specifically for the domain of XML data. It
is a logical index. An XML Index index can be used for SQL /XML functions XMLQuery,
XMLTable, XMLExists, and XMLCast.

XMLIndex presents the following advantages over other indexing methods:

= An XMLIndex index is effective in any part of a query; it is not limited to use in a
WHERE clause. This is not the case for any of the other kinds of indexes you might
use with XML data.

= An XMLIndex index with an unstructured component can speed access to both
SELECT list data and FROM list data, making it useful for XML fragment extraction,
in particular. Function-based indexes and CTXXPath indexes, both of which are
deprecated, cannot be used to extract document fragments.

= You can use an XMLIndex index with either XML schema-based or
non-schema-based data. You can use it with unstructured storage, hybrid storage,
and binary XML storage. B-tree indexing is appropriate only for XML
schema-based data that is stored object-relationally (structured storage); it is
ineffective for XML schema-based data stored in a CLOB instance.

6-8 Oracle XML DB Developer's Guide



XMLIndex

= You can use an XMLIndex index for searches with XPath expressions that target
collections, that is, nodes that occur multiple times within a document. This is not
the case for function-based indexes.

= You need no prior knowledge of the XPath expressions that might be used in
queries. The unstructured component of an XMI.Index index can be completely
general. This is not the case for function-based indexes.

s If you have prior knowledge of the XPath expressions to be used in queries, then
you can improve performance either by using a structured XMLIndex component
that targets fixed, structured islands of data that are queried often.

=  XMLIndex indexing—both index creation and index maintenance—can be carried
out in parallel, using multiple database processes. This is not the case for
function-based and CTXXPATH indexes, which are deprecated.

Structured and Unstructured XMLIndex Components

XMLIndex is used to index XML data that is semi-structured’, that is, data that
generally has little or no fixed structure. It applies to data that is stored using binary
XML or CLOB-based storage. This includes XML data stored in CLOB instances that are
embedded in object-relational storage (hybrid storage).

Semi-structured XML data can sometimes nevertheless contain islands of predictable,
structured data. An XMLIndex index can therefore have two components: a structured
component, used to index such islands, and an unstructured component, used to
index data that has little or variable structure.

A structured component can help with queries that project and use islands of
structured content. An unstructured component can help with queries that extract
XML fragments. Either component can be omitted from a given XMLIndex index.

Unlike a structured component, an unstructured component is general and relatively
untargeted. Though you can restrict an unstructured component to apply only to
certain XPath subsets, its path table indexes node content that can be of different scalar
types, which can require you to create multiple secondary indexes on the VALUE
column to deal with the different data types—see "Secondary Indexes on Column
VALUE" on page 6-17. Using an unstructured component alone can also lead to
inefficiencies involving multiple probes and self-joins of its path table, for queries that
project structured islands.

On the other hand, a structured component is not suited for queries that involve little
structure or queries that extract XML fragments. Use a structured component to index
structured islands of data; use an unstructured component to index data that has little
structure.

Figure 6-1 is the same as Figure 1-5 in Chapter 1. The last row indicates the
applicability of XMLIndex for different XML data use cases. It shows that XMLIndex
is appropriate for semi-structured XML data, however it is stored (last three columns).
And an XMLIndex index with a structured component is useful for document-centric
data that contains structured islands (fourth column).

! In this book, "structured" and "unstructured" %enerall%/ refer to XML Type storage options; they
refer less often to the nature of your data. "Hybrid" refers to object-relational storage with
some embedded CLOB storage.™'Semi-structired’ refers to XML content, regardless of storage.
Unstructured storage is CLOB-based storage, and structured storage is object-relational
storage.

Indexing XMLType Data 6-9



XMLIndex

Figure 6—-1 XML Use Cases and XML Indexing

Data-Centric

Document-Centric

includes a free-form
resume

author, date, and title
fields

Use Case XML schema-based data,| XML schema-based Variable, free-form data, Variable, free-form
with little variation and data, with some with some fixed data
little structural change embedded variable embedded structures
over time data

Typical Data Employee record Employee record that Technical article, with Web document or

book chapter

s "XMLIndex Structured Component" on page 6-10

Storage Model | Object-Relational Hybrid CLOB (Unstructured) or Binary XML
(Structured)
Indexing B-tree index - B-tree index XMLIndex index with XMLIndex index with
XML Index index with | structured and unstructured
unstructured component | unstructured components | component
See Also:

s "XMLIndex Unstructured Component" on page 6-13

=  "Advantages of XMLIndex" on page 6-8 for a summary of the
advantages provided by each XML Index component type

XMLIndex Structured Component

You create and use the structured component of an XMLIndex index for queries that

project fixed, structured islands of XML content, even if the surrounding data is
relatively unstructured.

A structured XMLIndex component organizes such islands in a relational format. In
this it is similar to SQL /XML function XMLTable, and the syntax you use to define the

structured component reflects this similarity. The relational tables used to store the

indexing data are data-type aware, and each column can be of a different scalar data

type.

You can thus think of the act of creating the structured component of an XMLIndex
index as decomposing a structured portion of your XML data into relational format. This

differs from the object-relational storage model of XML Type in these ways:

= A structured index component explicitly decomposes particular portions of your
data, which you specify—portions that you commonly query. Object-relational
XMLType storage involves automatic decomposition of an entire XMLType table or

column.

s The structured component of an XMLIndex index applies to both XML
schema-based and non-schema-based data. Object-relational XML Type storage
applies only to data that is based on an XML schema.

s The decomposed data for a structured XMLIndex component is stored in addition

to the XMLType data, as an index, rather than being the storage model for the
XMLType data itself.

»  For a structured XMLIndex component, the same data can be projected multiple

times, as columns of different data type.

6-10 Oracle XML DB Developer's Guide




XMLIndex

The index content tables used for the structured component of an XML Index index are
part of the index, but because they are normal relational tables you can, in turn, index
them using any standard relational indexes, including indexes that satisfy primary-key
and foreign-key constraints. You can also index them using domain indexes, such as
an Oracle Text CONTEXT index.

Another way to look at the structured component of an XML Index index sees that it
acts as a generalized function-based index. A function-based index is similar to a
structured XMLIndex component that has only one relational column.

If you find that for a particular application you are creating multiple function-based
indexes, then consider using a structured XMLIndex index instead. Create also B-tree
indexes on the columns of the structured index component.

Note:

= Queries that use SQL /XML function XMLTable can typically be
rewritten to use the relational indexing tables of an XMLIndex
structured component. These tables also contain some internal,
system-defined columns. These internal columns might change in
the future, so do not write code that depends on any assumptions
about their existence or contents.

s Queries that use Oracle SQL function XML Sequence within a SQL
TABLE collection expression, that is,
TABLE (XMLSequence (. . .) ), are not rewritten to use the
indexing tables of an XML Index structured component. Oracle
SQL function XMLSequence is deprecated in Oracle Database 11g
Release 2; use standard SQL /XML function XMLTab1le instead.

See Oracle Database SQL Language Reference for information about
the SQL TABLE collection expression.

Ignore the Index Content Tables; They Are Transparent

Although the index content tables of an XML Index structured component are normal
relational tables, they are also read-only: you cannot add or drop their columns or
modify (insert, update, or delete) their rows.

You can thus generally ignore the relational index content tables. You cannot access
them, other than to DESCRIBE them and create (secondary) indexes on them. You
need never explicitly gather statistics on them. You need only collect statistics on the
XMLIndex index itself or the base table on which the XMLIndex index is defined;
statistics are collected and maintained on the index content tables transparently.

See Also: "Collecting Statistics on XMLIndex Objects for the
Cost-Based Optimizer" on page 6-37

Data Type Considerations for XMLIndex Structured Component

The relational tables that are used for an XMLIndex structured component use SQL
data types. XQuery expressions that are used in queries use XML data types (XML
Schema data types and XQuery data types).

XQuery typing rules can automatically change the data type of a subexpression, to
ensure coherence and type-checking. For example, if a document that is queried using
XPath expression /PurchaseOrder/LineItem[@ItemNumber = 25] is not XML
schema-based, then the subexpression @ItemNumber is untyped, and it is then
automatically cast to xs : double by the XQuery = comparison operator. To index this

Indexing XMLType Data 6-11



XMLIndex

data using an XML Index structured component you must use BINARY_DOUBLE as the
SQL data type.

This is a general rule. For an XML Index index with structured component to apply to a
query, the data types must correspond. Table 6-5 shows the data-type
correspondences.

Table 6-5 XML and SQL Data Type Correspondence for XMLIndex

XML Data Type SQL Data Type

xs:decimal INTEGER or NUMBER

xs:double BINARY DOUBLE

xs:float BINARY_FLOAT

xs:date DATE, TIMESTAMP WITH TIMEZONE
xs:dateTime TIMESTAMP, TIMESTAMP WITH TIMEZONE
xs:dayTimeDuration INTERVAL DAY TO SECOND
xs:yearMonthDuration INTERVAL YEAR TO MONTH

Note: If the XML data type is xs:date or xs:dateTime, and if you
know that the data that you will query and for which you are creating
an index will not contain a time-zone component, then you can
increase performance by using SQL data type DATE or TIMESTAMP. If
the data might contain a time-zone component, then you must use
SQL data type TIMESTAMP WITH TIMEZONE.

If the XML and SQL data types involved do not have a built-in one-to-one
correspondence, then you must make them correspond (according to Table 6-5), in
order for the index to be picked up for your query. There are two ways you can do this:

= Make the index correspond to the query — Define (or redefine) the column in the
structured index component, so that it corresponds to the XML data type. For
example, if a query that you want to index uses the XML data type xs : double,
then define the index to use the corresponding SQL data type, BINARY_DOUBLE.

= Make the query correspond to the index — In your query, explicitly cast the
relevant parts of an XQuery expression to data types that correspond to the SQL
data types used in the index content table.

Example 6-3 and Example 64 show how you can cast an XQuery expression in your
query to match the SQL data type used in the index content table.

Example 6-3 Making Query Data Compatible with Index Data — SQL Cast

SELECT count (*) FROM purchaseorder
WHERE XMLCast (XMLQuery ('$p/PurchaseOrder/LineIltem/@ItemNumber'
PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
AS INTEGER)
= 25;

Example 6-4 Making Query Data Compatible with Index Data — XQuery Cast

SELECT count (*) FROM purchaseorder
WHERE XMLExists('Sp/PurchaseOrder/Lineltem[xs:decimal (@ItemNumber) = 25]°'
PASSING OBJECT_VALUE AS "p");

6-12 Oracle XML DB Developer's Guide



XMLIndex

Notice that the number 25 plays a different role in these two examples, even though in
both cases it is the purchase-order item number. In Example 6-3, 25 is a SQL number
of data type INTEGER; in Example 64, 25 is an XQuery number of data type
xs:decimal.

In Example 6-3, the XMLQuery result is cast to SQL type INTEGER, which is compared
with the SQL value 25. In Example 64, the value of attribute I temNumber is cast (in
XQuery) to the XML data type xs : decimal, which is compared with the XQuery
value 25 and which corresponds to the SQL data type (INTEGER) used for the index.
There are thus two different kinds of data-type conversion in these examples, but they
both convert query data to make it type-compatible with the index content table.

See Also: "Mapping XML Schema Data Types to SQL Data Types"
on page 7-45 for information about the built-in correspondence
between XML Schema data types and SQL data types

XMLIndex Unstructured Component

Unlike a B-tree index, which you define for a specific database column that represents
an individual XML element or attribute, or the XMLIndex structured component,
which applies to specific, structured document parts, the unstructured component of
an XMLIndex index is, by default, very general. Unless you specify a more narrow
focus by detailing specific XPath expressions to use or not to use in indexing, an
unstructured XML Index component applies to all possible XPath expressions for your
XML data.

The unstructured component of an XMLIndex index has three logical parts:

= A path index — This indexes the XML tags of a document and identifies its various
document fragments.

= An order index — This indexes the hierarchical positions of the nodes in an XML
document. It keeps track of parent-child, ancestor-descendant, and sibling
relations.

= A value index — This indexes the values of an XML document. It provides lookup
by either value equality or value range. A value index is used for values in query
predicates (WHERE clause).

The unstructured component of an XMLIndex index uses a path table and a set of
(local) secondary indexes on the path table, which implement the logical parts
described above. Two secondary indexes are created automatically:

= A pikey index, which implements the logical indexes for both path and order.
= Areal value index, which implements the logical value index.

You can modify these two indexes or create additional secondary indexes. The path
table and its secondary indexes are all owned by the owner of the base table upon
which the XML.Index index is created.

The pikey index handles paths and order relationships together, which gives the best
performance in most cases. If you find in some particular case that the value index is

not picked up when think it should be, you can replace the pikey index with separate
indexes for the paths and order relationships. Such (optional) indexes are called path
id and order key indexes, respectively. For best results, contact Oracle Support if you
find that the pikey index is not sufficient for your needs in some case.

The path table contains one row for each indexed node in the XML document. For each
indexed node, the path table stores:

s The corresponding rowid of the table that stores the document.

Indexing XMLType Data 6-13



XMLIndex

= A locator, which provides fast access to the corresponding document fragment. For
binary XML storage of XML schema-based data, it also stores data-type
information.

= An order key, to record the hierarchical position of the node in the document. You
can think of this as a Dewey decimal key like that used in library cataloging and
Internet protocol SNMP. In such a system, the key 3.21.5 represents the node
position of the fifth child of the twenty-first child of the third child of the
document root node.

= Anidentifier that represents an XPath path to the node.
»  The effective text value of the node.

Table 6-6 shows the main information? that is in the path table.

Table 6-6 XMLIndex Path Table

Column Data Type Description

PATHID RAW (8) Unique identifier for the XPath path to the node.

RID ROWID Rowid of the table used to store the XML data.

ORDER_KEY RAW(1000) Decimal order key that identifies the hierarchical position of

the node. (Document ordering is preserved.)

LOCATOR  RAW(2000) Fragment-location information. Used for fragment
extraction. For binary XML storage of XML schema-based
data, data-type information is also stored here.

VALUE VARCHAR2 (4000) Effective text value the node.

The pikey index uses path table columns PATHID, RID, and ORDER_KEY to represent
the path and order indexes. An optional path id index uses columns PATHID and RID
to represent the path index. A value index is an index on the VALUE column.

Example 6-5 explores the contents of the path table for two purchase-order
documents.

Example 6-5 Path Table Contents for Two Purchase Orders

<PurchaseOrder>
<Reference>SBELL-2002100912333601PDT</Reference>
<Actions>
<Action>
<User>SVOLLMAN</User>
</Action>
</Actions>

</PurchaseOrder>

<PurchaseOrder>
<Reference>ABEL-20021127121040897PST</Reference>
<Actions>
<Action>
<User>ZLOTKEY</User>
</Action>
<Action>
<User>KING</User>
</Action>

2 The actual path table implementation may be slightly different.

6-14 Oracle XML DB Developer's Guide



XMLIndex

</Actions>
</PurchaseOrder>

An XMLIndex index on an XMLType table or column storing these purchase orders
includes a path table that has one row for each indexed node in the XML documents.
Suppose that the system assigns the following PATHIDs when indexing the nodes
according to their XPath expressions:

PATHID Indexed XPath

1 /PurchaseOrder

2 /PurchaseOrder/Reference

3 /PurchaseOrder/Actions

4 /PurchaseOrder/Actions/Action

5 /PurchaseOrder/Actions/Action/User

The resulting path table would then be something like this (column LOCATOR is not
shown):

PATHID RID ORDER_KEY VALUE

1 R1 1 SBELL-2002100912333601PDTSVOLLMAN
2 R1 1.1 SBELL-2002100912333601PDT

3 R1 1.2 SVOLLMAN

4 R1 1.2.1 SVOLLMAN

5 R1 1.2.1.1 SVOLLMAN

1 R2 1 ABEL-20021127121040897PSTZLOTKEYKING
2 R2 1.1 ABEL-20021127121040897PST

3 R2 1.2 ZLOTKEYKING

4 R2 1.2.1 ZLOTKEY

5 rR2 1.2.1.1 ZLOTKEY

4 R2 1.2.2 KING

5 R2 1.2.2.1 KING

Ignore the Path Table - It Is Transparent

Though you can create secondary indexes on path-table columns, you can generally
ignore the path table itself. You cannot access the path table, other than to DESCRIBE it
and create (secondary) indexes on it. You need never explicitly gather statistics on the
path table. You need only collect statistics on the XML Index index or the base table on
which the XML Index index is defined; statistics are collected and maintained on the
path table and its secondary indexes transparently.

See Also: "Collecting Statistics on XMLIndex Objects for the
Cost-Based Optimizer" on page 6-37

Indexing XMLType Data 6-15



XMLIndex

Column VALUE of an XMLIndex Path Table

A secondary index on column VALUE is used with XPath expressions in a WHERE
clause that have predicates involving string matches. For example:

/PurchaseOrder [Reference/text () = "SBELL-2002100912333601PDT"]

Column VALUE stores the effective text value of an element or an attribute
node—comments and processing instructions are ignored during indexing.

s For an attribute, the effective text value is the attribute value.

»  For a simple element (an element that has no children), the effective text value is
the concatenation of all of the text nodes of the element.

»  For a complex element (an element that has children), the effective text value is the
concatenation of (1) the text nodes of the element itself and (2) the effective text
values of all of its simple-element descendants. (This is a recursive definition.)

The effective text value is limited (truncated), however, to 4000 bytes for a simple
element or attribute and to 80 bytes for a complex element.

Column VALUE is a fixed size, VARCHAR2 (4000) . Any overflow (beyond 4000 bytes)
during index creation or update is truncated, but the LOCATOR value for that row is
then flagged so that the full value can be retrieved from the base table when needed.

In addition to the 4000-byte limit for column VALUE, there is a limit on the size of a key
for the secondary index created on this column. This is the case for B-tree and
function-based indexes as well; it is not an XMLIndex limitation. The index-key size
limit is a function of the block size for your database. It is this limit that determines
how much of VALUE is indexed.

Thus, only the first 4000 bytes of the effective text value are stored in column VALUE,
and only the first N bytes of column VALUE are indexed, where N is the index-key size
limit (N < 4000). Because of the index-key size limit, the index on column VALUE acts
only as a preliminary filter for the effective text value.

For example, suppose that your database block size requires that the VALUE index be
no larger than 800 bytes, so that only the first 800 bytes of the effective text value is
indexed. The first 800 bytes of the effective text value is first tested, using XMLIndex,
and only if that text prefix matches the query value is the rest of the effective text value
tested.

The secondary index on column VALUE is an index on SQL function substr
(substring equality), because that function is used to test the text prefix. This
function-based index is created automatically as part of the implementation of
XMLIndex for column VALUE.

For example, the XPath expression /PurchaseOrder [Reference/text () = :1]
in a query WHERE clause might, in effect, be rewritten to a test something like this:

substr (VALUE, 1 800) = substr(:1, 1, 800) AND VALUE = :1;

This conjunction contains two parts, which are processed from left to right. The first
test uses the index on function substr as a preliminary filter, to eliminate text whose
first 800 bytes do not match the first 800 bytes of the value of bind variable : 1.

Only the first test uses an index—the full value of column VALUE is not indexed. After
preliminary filtering by the first test, the second test checks the entire effective text
value—that is, the full value of column VALUE—for full equality with the value of : 1.
This check does not use an index.

6-16 Oracle XML DB Developer's Guide



XMLIndex

Even if only the first 800 bytes of text is indexed, it is important for query performance
that up to 4000 bytes be stored in column VALUE, because that provides quick, direct
access to the data, instead of requiring, for example, extracting it from deep within a
CLOB-instance XML document. If the effective text value is greater than 4000 bytes,
then the second test in the WHERE-clause conjunction requires accessing the base-table
data.

Note that neither the VALUE column 4000-byte limit nor the index-key size affect query
results in any way; they can affect only performance.

Note: Because of the possibility of the VALUE column being
truncated, an Oracle Text CONTEXT index created on the VALUE
column might return incorrect results.

As mentioned, XML Index can be used with XML schema-based data. If an XML
schema specifies a defaultValue value for a given element or attribute, and a
particular document does not specify a value for that element or attribute, then the
defaultvalue value is used for the VALUE column.

Secondary Indexes on Column VALUE

Even if you do not specify a secondary index for column VALUE when you create an
XMLIndex index, a default secondary index is created on column VALUE. This default
index has the default properties—in particular, it is an index for text (string-valued)
data only.

You can, however, create a VALUE index of a different type. For example, you can
create a number-valued index if that is appropriate for many of your queries. You can
create multiple secondary indexes on the VALUE column. An index of a particular type
is used only when it is appropriate. For example, a number-valued index is used only
when the VALUE column is a number; it is ignored for other values. Secondary indexes
on path-table columns are treated like any other secondary indexes—you can alter
them, drop them, mark them unusable, and so on.

See Also:

s "Using XMLIndex with an Unstructured Component" on
page 6-19 for examples of creating secondary indexes on column
VALUE

s "PARAMETERS Clause for CREATE INDEX and ALTER INDEX"
on page 6-38 for the syntax of the PARAMETERS clause

XPath Expressions that Are Not Indexed by an XMLIndex Unstructured Component
The following types of XPath expressions are not indexed by XMLIndex:

= Applications of XPath functions, except ora:contains. In particular,
user-defined XPath functions are not indexed.

s Axes other than child, descendant, and attribute, that is, axes parent,
ancestor, following-sibling, preceding-sibling, following,
preceding, and ancestor-or-self.

= Expressions using the union operator, | (vertical bar).

Indexing XMLType Data 6-17



XMLIndex

Creating, Dropping, Altering, and Examining an XMLIndex Index

You create an XML Index index by declaring the index type to be XDB . XMLIndex, as
illustrated in Example 6-6.

Example 6-6 Creating an XMLIndex Index on XMLType Unstructured Storage
CREATE INDEX po_xmlindex_ix ON po_clob (OBJECT VALUE) INDEXTYPE IS XDB.XMLIndex;

This creates an XMLIndex index named po_xmlindex_ix on XMLType table po_
clob. The index has only an unstructured component, no structured component.

You specify inclusion of a structured component in an XMLIndex index by including a
structured_clause in the PARAMETERS clause. You specify inclusion of an
unstructured component by including a path_table_clausein the PARAMETERS
clause. You can do this when you create the XML Index index or when you modify it.
If, as in Example 6-6, you specify neither a structured_clausenor a path_
table_clause, then only an unstructured component is included.

If an XML Index index has both an unstructured and a structured component, then you
can drop either of these components using ALTER INDEX.

See Also:

= "PARAMETERS Clause for CREATE INDEX and ALTER INDEX"
on page 6-38

= 'structured_clause ::=" on page 6-42

= 'path_table_clause :=" on page 6-41
= 'drop_path_table_clause ::=" on page 6-41
= alter_index_group_clause ::=" on page 6-43
You can obtain the name of an XMLIndex index on a particular XMLType table (or

column), as shown in Example 6-7. You can also select INDEX_NAME from DBA_
INDEXES or ALL_INDEXES, as appropriate.

Example 6-7 Obtaining the Name of an XMLIndex Index on a Particular Table

SELECT INDEX_NAME FROM USER_INDEXES
WHERE TABLE_NAME = 'PO_CLOB' AND ITYP_NAME = 'XMLINDEX';

INDEX_NAME
PO_XMLINDEX_IX

1 row selected.

You rename or drop an XMLIndex index just as you would any other index, as
illustrated in Example 6-8. This renaming changes the name of the XMLIndex index
only. It does not change the name of the path table—you can rename the path table
separately.

Example 6-8 Renaming and Dropping an XMLIndex Index

ALTER INDEX po_xmlindex_ix RENAME TO new_name_ix;

DROP INDEX new_name_ix;

6-18 Oracle XML DB Developer's Guide



XMLIndex

Similarly, you can change other index properties using other ALTER INDEX options,
such as REBUILD. XMLIndex is no different from other index types in this respect.

The RENAME clause of an ALTER INDEX statement for XMLIndex applies only to the
XMLIndex index itself. To rename the path table and secondary indexes, you must
determine the names of these objects and use appropriate ALTER TABLE or ALTER
INDEX statements on them directly. Similarly, to retrieve the physical properties of the
secondary indexes or alter them in any other way, you must obtain their names, as in
Example 6-13.

Example 6-6 shows how to create an XML Index index on unstructured storage.

See Also: "PARAMETERS Clause for CREATE INDEX and ALTER
INDEX" on page 6-38 for the syntax of the PARAMETERS clause

Using XMLIndex with an Unstructured Component

This section covers operations you can perform on an XMLIndex index that has an
unstructured component (whether or not it also has a structured component)—see
"XMLIndex Unstructured Component" on page 6-13.

To include an unstructured component in an XMLIndex index, you use a path_
table_clause in the PARAMETERS clause when you create or modify the XML Index
index—see "path_table_clause ::=" on page 6-41.

If you do not specify a structured component, then the index will have an unstructured
component, even if you do not specify the path table. It is however generally a good
idea to specify the path table, so that it has a recognizable, user-oriented name that you
can refer to in other XMLIndex operations.

Example 6-9 shows how to name the path table ("my_path_table") when creating an
XMLIndex index with an unstructured component.

Example 6-9 Naming the Path Table of an XMLIndex Index

CREATE INDEX po_xmlindex_ix ON po_clob (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
PARAMETERS ('PATH TABLE my path table');

If you do not name the path table then its name is generated by the system, using the
index name you provide to CREATE INDEX as a base. Example 6-10 shows this for the
XMLIndex index created in Example 6-6.

Example 6-10 Determining the System-Generated Name of an XMLIndex Path Table

SELECT PATH _TABLE_NAME FROM USER_XML_INDEXES
WHERE TABLE_NAME = 'PO_CLOB' AND INDEX_NAME = 'PO_XMLINDEX_IX';

PATH TABLE_NAME

SYS67567_PO_XMLINDE_PATH_TABLE
1 row selected.

By default, the storage options of a path table and its secondary indexes are derived
from the storage properties of the base table on which the XML Index index is created.
You can specify different storage options by using a PARAMETERS clause when you
create the index, as shown in Example 6-11. The PARAMETERS clause of CREATE
INDEX (and ALTER INDEX) must be between single quotation marks (").

Indexing XMLType Data 6-19



XMLIndex

See Also: "PARAMETERS Clause for CREATE INDEX and ALTER
INDEX" on page 6-38 for the syntax of the PARAMETERS clause

Example 6-11 Specifying Storage Options When Creating an XMLIndex Index

CREATE INDEX po_xmlindex_ix ON po_clob (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
PARAMETERS
('PATH TABLE po_path_table

(PCTFREE 5 PCTUSED 90 INITRANS 5

STORAGE (INITIAL 1k NEXT 2k MINEXTENTS 3 BUFFER_POOL KEEP)

NOLOGGING ENABLE ROW MOVEMENT PARALLEL 3)

PIKEY INDEX po_pikey_ix (LOGGING PCTFREE 1 INITRANS 3)

VALUE INDEX po_value_ix (LOGGING PCTFREE 1 INITRANS 3)');

Because XMLIndex is a logical domain index, not a physical index, all physical
attributes are either zero (0) or NULL.

If an XML Index index has both an unstructured and a structured component, then you
can use ALTER INDEX to drop the unstructured component. To do this, you drop the
path table. Example 612 illustrates this. (This assumes that you also have a structured
component—Example 6-20 results in an index with both structured and unstructured
components.)

Example 6-12 Dropping an XMLIndex Unstructured Component

ALTER INDEX po_xmlindex_ix PARAMETERS ('DROP PATH TABLE') ;

Note that, in addition to specifying storage options for the path table, Example 6-11
names the secondary indexes on the path table.

Like the name of the path table, the names of the secondary indexes on the path-table
columns are generated automatically using the index name as a base, unless you
specify them in the PARAMETERS clause. Example 6-13 illustrates this, and shows how
you can determine these names using public view USER_IND_COLUMNS. It also shows
that the pikey index uses three columns.

Example 6—13 Determining the Names of the Secondary Indexes of an XMLIndex Index

SELECT INDEX_NAME, COLUMN_NAME, COLUMN_POSITION FROM USER_IND_COLUMNS
WHERE TABLE_NAME IN (SELECT PATH_TABLE NAME FROM USER_XML_INDEXES
WHERE INDEX_NAME = 'PO_XMLINDEX_IX')
ORDER BY INDEX_NAME, COLUMN_NAME;

INDEX_NAME COLUMN_NAME COLUMN_POSITION

SYS67563_PO_XMLINDE PIKEY IX  ORDER_KEY 3
SYS67563_PO_XMLINDE_ PIKEY IX PATHID 2
SYS67563_PO_XMLINDE_PIKEY_IX  RID 1
SYS67563_PO_XMLINDE_VALUE_IX SYS_NC00006$ 1

4 rows selected.

See Also: Example 6-19 on page 6-22 for a similar, but more
complex example

Creating Additional Secondary Indexes on an XMLIndex Path Table

This section adds extra secondary indexes to the XML Index index created in
Example 6-11.

6-20 Oracle XML DB Developer's Guide



XMLIndex

You can create any number of additional secondary indexes on the VALUE column of
the path table of an XML Index index. These can be of different types, including
function-based indexes and Oracle Text indexes.

Whether or not a given index is used for a given element occurrence when processing
a query is determined by whether it is of the appropriate type for that value and
whether it is cost-effective to use it.

Example 6-14 creates a function-based index on column VALUE of the path table using
SQL function substr. This might be useful if your queries often use substr applied
to the text nodes of XML elements.

Example 6-14 Creating a Function-Based Index on Path-Table Column VALUE
CREATE INDEX fn_based_ix ON po_path table (substr(VALUE, 1, 100));

If you have many elements whose text nodes represent numeric values, then it can
make sense to create a numeric index on the column VALUE. However, doing so
directly, in a manner analogous to Example 6-14, raises an ORA-01722 error (invalid
number) if some of the element values are not numbers. This is illustrated in
Example 6-15.

Example 6-15 Trying to Create a Numeric Index on Path-Table Column VALUE Directly

CREATE INDEX direct_num_ix ON po_path_table (to_binary_double (VALUE)) ;

CREATE INDEX direct_num_ix ON po_path_table (to_binary_ double (VALUE))
*

ERROR at line 1:
ORA-01722: invalid number

What is needed is an index that is used for numeric-valued elements but is ignored for
element occurrences that do not have numeric values. Procedure
createNumberIndex of package DBMS_XMLINDEX exists specifically for this
purpose. You pass it the names of the database schema, the XML.Index index, and the
numeric index to be created. Creation of a numeric index is illustrated in

Example 6-16.

Example 6-16 Creating a Numeric Index on Column VALUE with Procedure
createNumberindex

CALL DBMS_XMLINDEX.createNumberIndex('OE', 'PO_XMLINDEX IX', 'API_NUM_IX');

Note that because such an index is specifically designed to ignore elements that do not
have numeric values, its use does not detect their presence. If there are non-numeric
elements and, for whatever reason, the XML Index index is not used in some query,
then an ORA-01722 error is raised. However, if the index is used, no such error is
raised, because the index ignores non-numeric data. As always, the use of an index
never changes the result set—it never gives you different results, but use of an index
can prevent you from detecting erroneous data.

Creating a date-valued index is similar to creating a numeric index; you use procedure
DBMS_XMLINDEX.createDateIndex. Example 6-17 shows this.

Example 6-17 Creating a Date Index on Column VALUE with Procedure createDatelndex

CALL DBMS_XMLINDEX.createDateIndex('OE', 'PO_XMLINDEX_IX', 'API_DATE_IX',
'dateTime') ;

Example 6-18 creates an Oracle Text CONTEXT index on column VALUE. This is useful
for full-text queries on text values of XML elements. XPath predicates that use XPath

Indexing XMLType Data 6-21



XMLIndex

function ora:contains are rewritten to applications of Oracle SQL function
contains on column VALUE. If a CONTEXT index is defined on column VALUE, then it
is used during predicate evaluation. An Oracle Text index is independent of all other
VALUE-column indexes.

Example 6-18 Creating an Oracle Text CONTEXT Index on Path-Table Column VALUE

CREATE INDEX po_otext_ix ON po_path_table (VALUE)
INDEXTYPE IS CTXSYS.CONTEXT PARAMETERS ('TRANSACTIONAL') ;

See Also:

s "Column VALUE of an XMLIndex Path Table" on page 6-16 for
information about the possibility of an Oracle Text CONTEXT index
created on the VALUE column returning incorrect results

= "Oracle Text Indexes on XML Data" on page 6-46

The query in Example 6-19 shows all of the secondary indexes created on the path
table of an XML Index index. The indexes created explicitly are in bold. Note in
particular that some indexes, such as the function-based index created on column
VALUE, do not appear as such; the column name listed for such an index is a
system-generated name such as SYS_NC00007$. You cannot see these columns by
executing a query with COLUMN_NAME = 'VALUE' in the WHERE clause.

Example 6—-19 Showing All Secondary Indexes on an XMLIndex Path Table

SELECT c.INDEX_NAME, c.COLUMN_NAME, c.COLUMN_POSITION, e.COLUMN_EXPRESSION
FROM USER_IND_COLUMNS c LEFT OUTER JOIN USER_IND_ EXPRESSIONS e
ON (c.INDEX NAME = e.INDEX NAME)
WHERE c.TABLE_NAME IN (SELECT PATH_TABLE_NAME FROM USER_XML_INDEXES
WHERE INDEX NAME = 'PO_XMLINDEX IX')
ORDER BY c.INDEX_NAME, c.COLUMN_NAME;

INDEX_NAME COLUMN_NAME COLUMN_POSITION COLUMN_EXPRESSION

API_DATE_IX SYS_NC00009$ 1 SYS_EXTRACT UTC (SYS_XMLCONV ("V
ALUE",3,8,0,0,181))

API_NUM_IX SYS_NC00008% 1 TO_BINARY DOUBLE ("VALUE")

FN_BASED_IX SYS_NC00007% 1 SUBSTR("VALUE",1,100)

PO_OTEXT IX VALUE 1

PO_PIKEY IX ORDER_KEY 3

PO_PIKEY IX PATHID 2

PO_PIKEY IX RID 1

PO_VALUE_IX SYS_NC00006S 1 SUBSTRB("VALUE",1,1599)

8 rows selected.

See Also:

»  Oracle Database PL/SQL Packages and Types Reference for
information on PL/SQL procedures createNumberIndex and
createDateIndex in package DBMS_XMLINDEX

s "Oracle Text Indexes Are Used Independently of Other Indexes"
on page 6-47 for information on using Oracle Text indexes

6-22 Oracle XML DB Developer's Guide



XMLIndex

Using XMLIndex with a Structured Component

To include a structured component in an XMLIndex index, you use a structured_
clause in the PARAMETERS clause when you create or modify the XMLIndex
index—see "structured_clause ::=" on page 6-42.

A structured_clause specifies the structured islands that you want to index. You
use the keyword GROUP to specify each structured island: an island thus corresponds
syntactically to a structure group. If you specify no group explicitly, then the
predefined group DEFAULT_GROUP is used. For ALTER INDEX, you precede the
GROUP keyword with the modification operation keyword: ADD_GROUP specifies a
new group (island); DROP_GROUP deletes a group.

Why have multiple groups within a single index, instead of simply using multiple
XMLIndex indexes? The reason is that XML.Index is a domain index, and you can
create only one domain index of a given type on a given database column.

The syntax for defining a structure group, that is, indexing a structured island, is
similar to the syntax for invoking SQL /XML function XMLTable: you use keywords
XMLTable and COLUMNS to define relational columns, and you use multilevel
chaining of XMLTable to handle collections.

Example 6-20 shows the creation of an XMLIndex index with only an unstructured
component. An unstructured component is created because the PARAMETERS clause
explicitly names the path table.

Example 6-20 then uses ALTER INDEX to add a structured component (group) named
po_item. This structure group includes two relational tables, each specified with
keyword XMLTable.

Example 6-20 XMLIndex Index: Adding a Structured Component

CREATE INDEX po_xmlindex_ix ON po_clob (OBJECT_VALUE)
INDEXTYPE IS XDB.XMLIndex PARAMETERS ('PATH TABLE path_tab');

BEGIN
DBMS_XMLINDEX.registerParameter (
'myparam',
'ADD_GROUP GROUP po_item
XMLTable po_idx_tab ''/PurchaseOrder''
COLUMNS reference  VARCHAR2(30) PATH ''Reference'’,

requestor VARCHAR2 (30) PATH ''Requestor'',
username VARCHAR2 (30) PATH ''User'',

lineitem XMLType PATH ''Lineltems/Lineltem'' VIRTUAL
XMLTable po_index_lineitem ''/LineItem'' PASSING lineitem
COLUMNS itemno BINARY DOUBLE PATH ''@ItemNumber'',
description VARCHAR2 (256) PATH ''Description'',
partno VARCHAR2 (14) PATH ''Part/@Id'',

quantity BINARY DOUBLE PATH ''Part/@Quantity'',
unitprice BINARY DOUBLE PATH ''Part/@UnitPrice''');
END;

ALTER INDEX po_xmlindex_ix PARAMETERS ('PARAM myparam') ;

The top-level table, po_idx_tab, has columns reference, requestor, username,
and lineitem. Column lineitemis of type XMLType. It represents a collection, so it
is passed to the second XMLTable construct to form the second-level relational table,
po_index_lineitem, which has columns itemno, description, partno,
quantity,and unitprice.

Indexing XMLType Data 6-23



XMLIndex

The keyword VIRTUAL is required for an XMLType column. It specifies that the
XMLType column itself is not materialized: its data is stored in the XML Index index
only in the form of the relational columns specified by its corresponding XMLTable
table.

You cannot create more than one XMLType column in a given XMLTable clause. To
achieve that effect, you must instead define an additional group.

Example 6-20 also illustrates the use of a registered parameter string in the
PARAMETERS clause. It uses PL/SQL procedure DBMS_
XMLINDEX.registerParameter to register the parameters string named myparam.
Then it uses ALTER INDEX to update the index parameters to include those in the
string myparam.

If an XML Index index has both an unstructured and a structured component, then you
can use ALTER INDEX to drop the structured component. You do this by dropping all
of the structure groups that compose the structured component. Example 6-21 shows
how to drop the structured component that was added in Example 6-20, by dropping
its only structure group, po_item.

Example 6-21 Dropping an XMLIndex Structured Component
ALTER INDEX po_xmlindex_ix PARAMETERS ('DROP_GROUP GROUP po_item');

As indicated in section "XMLIndex Structured Component" on page 6-10, because the
tables used for the structured component of an XML Index index are normal relational
tables, you can index them using any standard relational indexes.

Example 6-22 and Example 623 illustrate this: Example 6-22 creates a B-tree index on
the reference column of the index content table (structured fragment) for the
XMLIndex index of Example 6-20. Example 623 creates an Oracle Text CONTEXT
index on the description column and then uses a full-text query on the content.

Example 6-22 Creating a B-Tree Index on an XMLIndex Index Content Table
CREATE INDEX idx_tab_ref_ ix ON po_idx_tab (reference);

Example 6—23 Oracle Text CONTEXT Index on an XMLIndex Index Content Table

CREATE INDEX idx_tab_desc_ix ON po_index_ lineitem (description)
INDEXTYPE IS CTXSYS.CONTEXT PARAMETERS ('transactional');

SELECT XMLQuery ('/PurchaseOrder/LinelItems/LinelItem'
PASSING OBJECT_VALUE RETURNING CONTENT)
FROM po_clob
WHERE XMLExists('/PurchaseOrder/Lineltems/Lineltem
[ora:contains (Description, "Picnic") > 0]
PASSING OBJECT_VALUE)
AND XMLExists ('/PurchaseOrder[User="SBELL"]' PASSING OBJECT_VALUE) ;

Example 6-24 shows the creation of an XMLIndex index that has only a structured
component (no path table clause) and that uses the XMLNAMESPACES clause to specify
namespaces. It specifies that the index data be compressed and use tablespace
SYSAUX. The example assumes a binary XML table po_binxml with non XML
schema-based data.

Example 6-24 XMLIndex with Only a Structured Component and using Namespaces

CREATE INDEX po_struct ON po_binxml (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
PARAMETERS ('XMLTable po_ptab

6-24 Oracle XML DB Developer's Guide



XMLIndex

(TABLESPACE "SYSAUX" COMPRESS FOR OLTP)
XMLNAMESPACES (DEFAULT ''http://www.example.com/po''),

"' /purchaseOrder"'"'
COLUMNS orderdate DATE PATH ''QorderDate'',
id BINARY_DOUBLE PATH ''@id'"',
items XMLType PATH ''items/item'' VIRTUAL

XMLTable 1i_tab
(TABLESPACE "SYSAUX" COMPRESS FOR OLTP)
XMLNAMESPACES (DEFAULT '‘'http://www.example.com/po''),
''/item'' PASSING items

COLUMNS partnum VARCHAR2 (15) PATH ''@partNum'',
description CLOB PATH ''productName'',
usprice BINARY DOUBLE PATH ''USPrice'',
shipdat DATE PATH ''shipDate''');

See Also:

= Example 6-28, "Using a Structured XMLIndex Component for a
Query with Two Predicates" on page 6-28

= "Oracle Text Indexes on XML Data" on page 6-46

s "Using a Registered PARAMETERS Clause for XMLIndex" on
page 6-39

»  'structured_clause ::=" on page 6-42

= "Usage of XMLIndex_xmltable_clause" on page 6-45 for
information about an XMLType column in an XMLTable clause

= "Usage of column_clause" on page 6-46 for information about
keywords COLUMNS and VIRTUAL

= "Data Type Considerations for XMLIndex Structured Component"
on page 6-11

How to Tell Whether XMLIndex is Used

It is at query compile time that Oracle Database determines whether or not a given
XMLIndex index can be used, that is, whether the query can be rewritten into a query
against the index.

For an unstructured XMLIndex component, if it cannot be determined at compile time
that an XPath expression in the query is a subset of the paths you specified to be used
for XML Index indexing, then the unstructured component of the index is not used.

For example, if the path /PurchaseOrder/LineItems//* is included for indexing,
then a query with /PurchaseOrder/LineItems/LineItem/Description can
use the index, but a query with //Description cannot. The latter also matches
potential Description elements that are not children of
/PurchaseOrder/LineItems, and it is not possible at compile time to know if such
additional Description elements are present in the data.

To know whether a particular XML Index index has been used in resolving a query,
you can examine an execution plan for the query.

»  If the unstructured component of the index is used, then its path table, order key, or
path id is referenced in the execution plan. The execution plan does not directly
indicate that a domain index was used; it does not refer to the XML Index index by
name. See Example 6-25 on page 6-26 and Example 6-27 on page 6-27.

»  If the structured component of the index is used, then one or more of its index
content tables is called out in the execution plan. See Example 6-28 on page 6-28

Indexing XMLType Data 6-25



XMLIndex

and Example 6-29 on page 6-29.

See Also:

»  Oracle Database SQL Language Reference

»  Oracle Database Performance Tuning Guide
Example 6-25 shows that the XML Index index created in Example 6-9 is used in a
particular query. The reference to MY_PATH_TABLE in the execution plan here
indicates that the XML Index index (created in Example 6-9) is used in this query.

Similarly, reference to columns LOCATOR, ORDER_KEY, and PATHID indicates the same
thing.

Example 6-25 Checking Whether an XMLIndex Unstructured Component Is Used
SET AUTOTRACE ON EXPLAIN

SELECT XMLQuery ('/PurchaseOrder/Requestor' PASSING OBJECT_VALUE RETURNING CONTENT) FROM po_clob
WHERE XMLExists('/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]"' PASSING OBJECT_VALUE) ;

XMLQUERY (' /PURCHASEORDER/REQUESTOR ' PASSINGOBJECT_VALUERETURNINGCONTENT)

<Requestor>Sarah J. Bell</Requestor>

1 row selected.

Execution Plan

| 1d | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

| 0 | SELECT STATEMENT | | 1] 24 | 28  (4)| 00:00:01 |
| 1| SORT GROUP BY | | 1] 3524 | | |
[* 2| TABLE ACCESS BY INDEX ROWID | MY_PATH TABLE \ 2 | 7048 | 3 (0)| 00:00:01 |
[* 3| INDEX RANGE SCAN | SYS67616_PO_XMLINDE_PIKEY IX | 1 | 2 (0)| 00:00:01 |
| 4 | NESTED LOOPS \ \ 1| 24 | 28 (4)] 00:00:01 |
| 5| VIEW | vw_so_1 \ 1] 12 | 26 (0)| 00:00:01 |
| 6| HASH UNIQUE | | 1| 5046 | | |
| 7] NESTED LOOPS \ \ 1| 5046 | 26 (0)| 00:00:01 |
[* 8 | TABLE ACCESS BY INDEX ROWID| MY_PATH TABLE \ 1] 3524 | 24 (0)| 00:00:01 |
[* 9 | INDEX RANGE SCAN | SYS67616_PO_XMLINDE_VALUE_IX | 73 | | 1 (0)] 00:00:01 |
[* 10 | TABLE ACCESS BY INDEX ROWID| MY _PATH TABLE | 1] 1522 | 2 (0)| 00:00:01 |
[* 11 | INDEX RANGE SCAN | SYS67616_PO_XMLINDE PIKEY IX | 1] | 1 (0)]| 00:00:01 |
| 12 | TABLE ACCESS BY USER ROWID | PO_CLOB | 1] 12 | 1 (0)] 00:00:01 |

2 - filter(SYS_XMLI_LOC_ISNODE ("SYS_P0"."LOCATOR")=1)

3 - access("SYS_P0"."RID"=:Bl1 AND "SYS_PO"."PATHID"=HEXTORAW('76E2"') )

8 - filter("SYS_P4"."VALUE"='SBELL-2002100912333601PDT' AND "SYS_P4"."PATHID"=HEXTORAW('4F8C') AND
SYS_XMLI_LOC_ISNODE("SYS_P4"."LOCATOR")=1)

9 - access(SUBSTRB("VALUE",1,1599)="'SBELL-2002100912333601PDT")

10 - filter(SYS_XMLI_LOC_ISNODE("SYS_P2"."LOCATOR")=1)

11 - access("SYS_P4"."RID"="SYS_P2"."RID" AND "SYS_P2"."PATHID"=HEXTORAW('4E36') AND
"SYS_P2"."ORDER_KEY"<"SYS P4"."ORDER_KEY")

filter ("SYS_P4"."ORDER_KEY"<SYS ORDERKEY MAXCHILD ("SYS_P2"."ORDER_KEY") AND

SYS_ORDERKEY DEPTH ("SYS_P2"."ORDER_KEY")+1=SYS ORDERKEY DEPTH("SYS_P4"."ORDER KEY"))

6-26 Oracle XML DB Developer's Guide



XMLIndex

Given the name of a path table from an execution plan such as this, you can obtain the
name of its XMLIndex index as shown in Example 6-26. (This is more or less opposite
to the query in Example 6-10.)

Example 6-26 Obtaining the Name of an XMLIndex Index from Its Path-Table Name
SELECT INDEX_NAME FROM USER_XML_INDEXES WHERE PATH TABLE NAME = 'MY PATH TABLE';

INDEX_NAME

PO_XMLINDEX_ IX
1 row selected.

XMLIndex can be used for XPath expressions in the SELECT list, the FROM list, and the
WHERE clause of a query, and it is useful for SQL /XML functions XMLQuery,
XMLTable, XMLExists, and XMLCast. Unlike function-based indexes (and
CTXXPath indexes, which are deprecated), XMLIndex indexes can be used when you
extract data from an XML fragment in a document.

Example 6-27 illustrates this.

Example 6-27 Extracting Data from an XML Fragment using XMLIndex

SET AUTOTRACE ON EXPLAIN

SELECT li.description, 1li.itemno
FROM po_clob, XMLTable('/PurchaseOrder/LinelItems/Lineltem'
PASSING OBJECT_VALUE
COLUMNS "DESCRIPTION" VARCHAR(40) PATH 'Description',
"ITEMNO" INTEGER PATH '@ItemNumber') 1i
WHERE XMLExists('/PurchaseOrder [Reference="SBELL-2002100912333601PDT"]"
PASSING OBJECT_VALUE) ;

DESCRIPTION ITEMNO

A Night to Remember
The Unbearable Lightness Of Being 2
Sisters 3

3 rows selected.

Execution Plan

0 | SELECT STATEMENT | | 1| 1546 | 30  (4)]00:00:01 |
* 1 | FILTER | | | | \

\

\

\

|* 2| TABLE ACCESS BY INDEX ROWID | MY_PATH_TABLE | 1| 3524 | 3 (0)]00:00:01 |
[* 3| INDEX RANGE SCAN | SYS67616_PO_XMLINDE_PIKEY IX | 1 | 2 (0)|00:00:01 |
|* 4| FILTER | | | | | |
|* 5 | TABLE ACCESS BY INDEX ROWID | MY_PATH_TABLE | 1] 3524 | 3 (0)]00:00:01 |
[* 6 | INDEX RANGE SCAN | SYS67616_PO_XMLINDE_PIKEY IX | 1 | 2 (0)|00:00:01 |
| 7 | NESTED LOOPS | | | | | |
| 8| NESTED LOOPS | | 1| 1546 | 30  (4)]00:00:01 |
| 9| NESTED LOOPS | | 1 24 | 28  (4)]00:00:01 |
| 10 | VIEW | vwi_sQ 1 | 1| 12 | 26  (0)]00:00:01 |
| 11 | HASH UNIQUE | | 1| 5046 | | |
| 12 | NESTED LOOPS | | 1| 5046 | 26  (0)]00:00:01 |
[* 13 | TABLE ACCESS BY INDEX ROWID| MY_PATH_TABLE | 1] 3524 | 24 (0)]00:00:01 |

Indexing XMLType Data 6-27



XMLIndex

[* 14 | INDEX RANGE SCAN | SYS67616_PO_XMLINDE VALUE_IX | 73 | | 1 (0)]|00:00:01 |
|* 15 | TABLE ACCESS BY INDEX ROWID| MY PATH TABLE | 1] 1522 | 2 (0)|00:00:01 |
[* 16 | INDEX RANGE SCAN | SYS67616_PO_XMLINDE PIKEY IX | 1] | 1 (0)]|00:00:01 |
| 17 | TABLE ACCESS BY USER ROWID | PO_CLOB | 1 12 | 1 (0)]00:00:01 |
[* 18 | INDEX RANGE SCAN | SYS67616_PO_XMLINDE_PIKEY IX | 1 | 1 (0)]00:00:01 |
|* 19 | TABLE ACCESS BY INDEX ROWID | MY _PATH_TABLE | 1] 1522 | 2 (0)]00:00:01 |

1 - filter(:B1<SYS_ORDERKEY MAXCHILD(:B2))
2 - filter(SYS_XMLI_LOC_ISNODE ("SYS_P2"."LOCATOR")=1)
3 - access("SYS_P2"."RID"=:Bl AND "SYS_P2"."PATHID"=HEXTORAW('28EC') AND "SYS_P2"."ORDER_KEY">:B2 AND
"SYS_P2"."ORDER_KEY'"<SYS ORDERKEY MAXCHILD(:B3))
filter (SYS_ORDERKEY DEPTH("SYS_P2"."ORDER_KEY")=SYS ORDERKEY DEPTH(:B1)+1)
4 - filter(:B1<SYS_ORDERKEY MAXCHILD (:B2))
5 - filter(SYS_XMLI_LOC_ISNODE("SYS_P5"."LOCATOR")=1)
6 - access("SYS_P5"."RID"=:Bl AND "SYS_P5"."PATHID"=HEXTORAW('60E0') AND "SYS P5"."ORDER_KEY">:B2 AND
"SYS_P5"."ORDER_KEY"<SYS ORDERKEY MAXCHILD(:B3))
filter (SYS_ORDERKEY DEPTH("SYS_P5"."ORDER_KEY")=SYS_ORDERKEY DEPTH(:Bl1)+1)
13 - filter("SYS_P10"."VALUE"='SBELL-2002100912333601PDT' AND "SYS_P10"."PATHID"=HEXTORAW('4F8C') AND
SYS_XMLI_LOC_ISNODE("SYS_P10"."LOCATOR")=1)
14 - access(SUBSTRB("VALUE",1,1599)="'SBELL-2002100912333601PDT")
15 - filter(SYS_XMLI_LOC_ISNODE("SYS_P8"."LOCATOR")=1)
16 - access("SYS_P10"."RID"="SYS_P8"."RID" AND "SYS_P8"."PATHID"=HEXTORAW('4E36') AND
"SYS_P8"."ORDER_KEY"<"SYS_P10"."ORDER_KEY")
filter ("SYS_P10"."ORDER_KEY"<SYS_ORDERKEY MAXCHILD("SYS_P8"."ORDER_KEY") AND
SYS_ORDERKEY DEPTH ("SYS_P8"."ORDER_KEY")+1=SYS ORDERKEY DEPTH("SYS_P10"."ORDER KEY"))
18 - access("PO_CLOB".ROWID="SYS_ALIAS_4"."RID" AND "SYS_ALIAS_4"."PATHID"=HEXTORAW('3748"') )
19 - filter(SYS_XMLI_LOC_ISNODE ("SYS_ALIAS 4"."LOCATOR")=1)

- dynamic sampling used for this statement (level=2)

The execution plan for the query in Example 6-27 shows, by referring to the path table,
that XMLIndex is used. It also shows the use of Oracle internal SQL function sys_
orderkey_depth—see "Guidelines for Using XMLIndex with an Unstructured
Component" on page 6-32.

Example 6-28 shows an execution plan that indicates that the XMLIndex index created
in Example 6-20 is picked up for a query that uses two WHERE clause predicates. With
only the unstructured XMLIndex component, this query would involve a join of the
path table to itself, because of the two different paths in the WHERE clause.

Example 6-28 Using a Structured XMLIndex Component for a Query with Two Predicates

EXPLAIN PLAN FOR
SELECT XMLQuery ('/PurchaseOrder/Lineltems/Lineltem' PASSING OBJECT VALUE RETURNING CONTENT)
FROM po_clob
WHERE XMLExists('/PurchaseOrder/Lineltems/LineIltem
[ora:contains (Description, "Picnic") > 0]' PASSING OBJECT_VALUE)
AND XMLEXists('/PurchaseOrder[User="SBELL"]' PASSING OBJECT VALUE);

| 1d | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT \ \ 1] 189 | 22 (14)| 00:00:01 |
| 1| SORT GROUP BY | | 1| 3524 | | |
|* 2| TABLE ACCESS BY INDEX ROWID| PATH_TAB | 2 | 7048 | 3 (0)| 00:00:01 |
[* 3| INDEX RANGE SCAN | SYS67840_PO_XMLINDE_PIKEY_IX | 1| | 2 (0)] 00:00:01 |
|* 4 | HASH JOIN SEMI | | 1| 189 | 22 (14)| 00:00:01 |
| 5| NESTED LOOPS | | 13 | 637 | 4 (25)] 00:00:01 |

6-28 Oracle XML DB Developer's Guide



XMLIndex

| 6| SORT UNIQUE | | 13 | 351 | 3 (0)| 00:00:01 |
[* 7 | TABLE ACCESS FULL | PO_IDX_TAB | 13 | 351 | 3 (0)| 00:00:01 |
[* 8 | INDEX UNIQUE SCAN | SYS_C006004 | 1 22 | 0  (0)| 00:00:01 |
[* 9 | TABLE ACCESS FULL | PO_INDEX LINEITEM \ 13 | 1820 | 17 (6)| 00:00:01 |

2 - filter(SYS_XMLI_LOC_ISNODE ("SYS_PO"."LOCATOR")=1)

3 - access("SYS_P0"."RID"=:B1 AND "SYS_PQ"."PATHID"=HEXTORAW('3748"') )

4 - access("SYS_ALIAS_1"."SYS_NC_OIDS"="SYS_ALIAS_3"."OID")

7 - filter("SYS_ALIAS_2"."USERNAME"='SBELL')

8 - access("SYS_ALIAS_1"."SYS_NC_OID$"="SYS_ALIAS_2"."OID")

9 - filter (SYS_XMLCONTAINS ("SYS_ALIAS_ 3"."DESCRIPTION", 'Picnic')>0)
Note

- dynamic sampling used for this statement (level=2)
- Unoptimized XML construct detected (enable XMLOptimizationCheck for more information)

30 rows selected.

The presence in Example 6-28 of the path table name, path_tab, indicates that the
unstructured index component of the index is used. The presence of the index content
table po_1idx_tab indicates that the structured index component is used.

Example 6-29 shows an execution plan that indicates that the same XMLIndex index is
also picked up for a query that uses multilevel XML Table chaining. With only the
unstructured XMLIndex component, this query too would involve a join of the path
table to itself, because of the different paths in the two XMLTable function calls.

Example 6-29 Using a Structured XMLIndex Component for a Query with Multilevel Chaining

EXPLAIN PLAN FOR
SELECT po.reference, 1i.*
FROM po_clob p,
XMLTable('/PurchaseOrder' PASSING p.OBJECT_VALUE
COLUMNS reference VARCHAR2 (30) PATH 'Reference’,
lineitem XMLType PATH 'LineItems/LinelItem') po,
XMLTable('/Lineltem' PASSING po.lineitem
COLUMNS itemno BINARY DOUBLE PATH '@ItemNumber',
description VARCHAR2 (256) PATH 'Description',
partno VARCHAR2 (14) PATH 'Part/@Id',
quantity BINARY_DOUBLE PATH 'Part/@Quantity’,
unitprice BINARY DOUBLE PATH 'Part/@UnitPrice') 1i
WHERE po.reference = 'SBELL-20021009123335280PDT";

| 1a | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

| 0 | SELECT STATEMENT | | 17 | 20366 | 11 (0)| 00:00:01 |
| 1| NESTED LOOPS | \ \ \ | \
| 2| NESTED LOOPS | | 17 | 20366 | 11 (0)] 00:00:01 |
| 3] NESTED LOOPS | \ 1] 539 | 3 (0)] 00:00:01 |
[* 4 | TABLE ACCESS FULL | PO_IDX_TAB \ 1] 529 | 3 (0)| 00:00:01 |
[* 5 | INDEX UNIQUE SCAN | sys_c006320 | 1] 10 | 0 (0)] 00:00:01 |
[* 6 | INDEX RANGE SCAN | SYS69412_69421_PKY_IDX | 17 | | 1 (0)| 00:00:01 |
| 7| TABLE ACCESS BY INDEX ROWID| PO_INDEX LINEITEM \ 17 | 11203 | 8 (0)]| 00:00:01 |

Indexing XMLType Data 6-29



XMLIndex

4 - filter("SYS_ALIAS_8"."REFERENCE"='SBELL-20021009123335280PDT")
5 - access("SYS_ALIAS_8"."OID"="P"."SYS_NC_OIDS")
6 - access("SYS_ALIAS_8"."KEY"="SYS_ALIAS 9"."PKEY")

- dynamic sampling used for this statement

25 rows selected.

The execution plan shows direct access to the relational index content tables, po_idx_
tab and po_index_lineitem. There is no access at all to the path table, path_tab.

See Also: "Collecting Statistics on XMLIndex Objects for the
Cost-Based Optimizer" on page 6-37

Turning Off Use of XMLIndex

You can turn off the use of XMLIndex in any of these ways:
» Use optimizer hint /*+ NO_XMI,_QUERY_REWRITE */
» Use optimizer hint /*+ NO_XMLINDEX_REWRITE */

Hints NO_XMI._QUERY_REWRITE and NO_XMLINDEX_ REWRITE turn off the use of all
XMLIndex indexes. In addition to turning off use of XMLIndex, NO_XML_QUERY_
REWRITE turns off all XQuery optimization (XMLIndex is part of XPath rewrite).

Example 6-30 shows the use of these optimizer hints.

Example 6-30 Turning Off XMLIndex using Optimizer Hints

SELECT /*+ NO_XMLINDEX REWRITE */
count (*) FROM po_clob WHERE XMLExists('S$p/*' PASSING OBJECT_VALUE AS "p");

SELECT /*+ NO_XML_QUERY REWRITE */
count (*) FROM po_clob WHERE XMLExists('S$p/*' PASSING OBJECT_VALUE AS "p");

Note: The NO_INDEX optimizer hint does not apply to XMLIndex.

See Also:

= "XQuery Optional Features" on page 5-43 for information about
XQuery pragmas ora:xg_proc and ora:xg_gry, which you
can use for fine-grained control of XQuery optimization

= "How Oracle XML DB Processes XMLType Methods and SQL
Functions" on page 3-58 for information about streaming
evaluation of binary XML data

XMLIndex Path Subsetting: Specifying the Paths You Want to Index

One of the advantages of an XMLIndex index with an unstructured component is that
it is very general: you need not specify which XPath locations to index; you need no
prior knowledge of the XPath expressions that will be queried. By default, an
unstructured XML Index indexes all possible XPath locations in your XML data.

However, if you are aware of the XPath expressions that you are most likely to query,
then you can narrow the focus of XML Index indexing and thus improve performance.
Having fewer indexed nodes means less space is required for indexing, which

6-30 Oracle XML DB Developer's Guide



XMLIndex

improves index maintenance during DML operations. Having fewer indexed nodes
improves DDL performance, and having a smaller path table improves query
performance.

You narrow the focus of indexing by pruning the set of XPath expressions (paths)
corresponding to XML fragments to be indexed, specifying a subset of all possible
paths. You can do this in two alternative ways:

= Exclusion - Start with the default behavior of including all possible XPath
expressions, and exclude some of them from indexing.

s Inclusion - Start with an empty set of XPath expressions to be used in indexing,
and add paths to this inclusion set.

You can specify path subsetting either when you create an XML Index index using
CREATE INDEX or when you modify it using ALTER INDEX. In both cases, you
provide the subsetting information in the PATHS parameter of the statement's
PARAMETERS clause. For exclusion, you use keyword EXCLUDE. For inclusion, you use
keyword INCLUDE for ALTER INDEX and no keyword for CREATE INDEX (list the
paths to include). You can also specify namespace mappings for the nodes targeted by
the PATHS parameter.

For ALTER INDEX, keyword INCLUDE or EXCLUDE is followed by keyword ADD or
REMOVE, to indicate whether the list of paths that follows the keyword is to be added
or removed from the inclusion or exclusion list. For example, this statement adds path
/PurchaseOrder/Reference to the list of paths to be excluded from indexing:

ALTER INDEX po_xmlindex_ix REBUILD
PARAMETERS ('PATHS (EXCLUDE ADD (/PurchaseOrder/Reference))');

To alter an XMLIndex index so that it includes all possible paths, use keyword INDEX_
ALL_PATHS. See "alter_index_paths_clause ::=" on page 6-40.

Note: If you create an XMLIndex index that has both structured and
unstructured components, then, by default, any nodes indexed in the
structured component are also indexed in the unstructured
component; that is, they are not automatically excluded from the
unstructured component. If you do not want unstructured XMLIndex
indexing to apply to them, then you must explicitly use path
subsetting to exclude them.

See Also: "PARAMETERS Clause for CREATE INDEX and ALTER
INDEX" on page 6-38 for the syntax of the PARAMETERS clause

Examples of XMLIndex Path Subsetting

This section presents some examples of defining XML Index indexes on subsets of
XPath expressions.

Example 6-31 XMLIndex Path Subsetting with CREATE INDEX

CREATE INDEX po_xmlindex_ix ON po_clob (OBJECT_VALUE) INDEXTYPE IS XDB.XMLINDEX
PARAMETERS ('PATHS (INCLUDE (/PurchaseOrder/Lineltems//*
/PurchaseOrder/Reference)) ') ;

This statement creates an index that indexes only top-level element PurchaseOrder
and some of its children, as follows:

Indexing XMLType Data 6-31



XMLIndex

s All LineItems elements and their descendants
s All Reference elements

It does that by including the specified paths, starting with an empty set of paths to be
used for the index.

Example 6-32 XMLIndex Path Subsetting with ALTER INDEX

ALTER INDEX po_xmlindex_ix REBUILD
PARAMETERS ('PATHS (INCLUDE ADD (/PurchaseOrder/Requestor
/PurchaseOrder/Actions/Action//*))"');

This statement adds two more paths to those used for indexing. These paths index
element Requestor and descendants of element Action (and their ancestors).

Example 6-33 XMLIndex Path Subsetting using a Namespace Prefix

If an XPath expression to be used for XML Index indexing uses namespace prefixes,
you can use a NAMESPACE MAPPING clause to the PATHS list, to specify those prefixes.
Here is an example:

CREATE INDEX po_xmlindex_ix ON po_clob (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
PARAMETERS ('PATHS (INCLUDE (/PurchaseOrder/Lineltems//* /PurchaseOrder/ipo:Reference)
NAMESPACE MAPPING (xmlns="http://xmlns.oracle.com"
xmlns:ipo="http://xmlns.oracle.com/ipo"))"');

XMLIndex Path-Subsetting Rules
The following rules apply to XMLIndex path subsetting:

s The paths must reference only child and descendant axes, and they must test only
element and attribute nodes or their names (possibly using wildcards). In
particular, the paths must not involve predicates.

= You cannot specify both path exclusion and path inclusion; choose one or the
other.

s If an index was created using path exclusion (inclusion), then you can modify it
using only path exclusion (inclusion)—index modification must either further
restrict or further extend the path subset. For example, you cannot create an index
that includes certain paths and subsequently modify it to exclude certain paths.

Guidelines for Using XMLIndex with an Unstructured Component

The following are some guidelines for using XML Index with an unstructured
component. These guidelines are applicable only when the two alternatives discussed
return the same result set.

= Avoid prefixing // with ancestor elements. For example, use //c, not /a/b//c,
provided these return the same result set.

= Avoid prefixing /* with ancestor elements. For example, use /*/*/*, not
/a/*/*, provided these return the same result set.

s In a WHERE clause, use XMLExists rather than XMLCast of XMLQuery. This can
allow optimization that, in effect, invokes a subquery against the path-table VALUE
column. For example, use this:

SELECT count (*) FROM purchaseorder p
WHERE
XMLExists ('S$p/PurchaseOrder/Lineltems/Lineltem/Part[@Id="715515011020"]"
PASSING OBJECT_VALUE AS "p");

6-32 Oracle XML DB Developer's Guide



XMLIndex

Do not use this:

SELECT count (*) FROM purchaseorder p
WHERE XMLCast (XMLQuery ('Sp/PurchaseOrder/Lineltems/Lineltem/Part/@Id"
PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
AS VARCHAR2 (14))
= "715515011020";

When possible, use count (*), nof count (XMLCast (XMLQuery (...)),ina
SELECT clause. For example, if you know that a LineItem elementina
purchase-order document has only one Description child, use this:

SELECT count (*) FROM po_clob, XMLTable('//LineItem' PASSING OBJECT VALUE);

Do not use this:

SELECT count (1li.value)
FROM po_clob p, XMLTable('//LineItem' PASSING p.OBJECT_VALUE
COLUMNS value VARCHAR2 (30) PATH 'Description') 1i;

Reduce the number of XPath expressions used in a query FROM list as much as
possible. For example, use this:

SELECT 1i.description
FROM po_clob p,
XMLTable ('PurchaseOrder/Lineltems/Lineltem' PASSING p.OBJECT_VALUE
COLUMNS description VARCHAR2 (256) PATH 'Description') 1i;

Do not use this:

SELECT 1li.description
FROM po_clob p,
XMLTable ('PurchaseOrder/Lineltems' PASSING p.OBJECT_VALUE) ls,
XMLTable('Lineltems/Lineltem’ PASSING 1s.0OBJECT_VALUE
COLUMNS description VARCHAR2 (256) PATH 'Description') 1i;

If you use an XPath expression in a query to drill down inside a virtual table
(created, for example, using SQL/XML function XMLTable), then create a
secondary index on the order key of the path table using Oracle SQL function
sys_orderkey_depth. Here is an example of such a query; the selection
navigates to element Description inside virtual line-item table 11.

SELECT 1li.description
FROM po_clob p,
XMLTable ('PurchaseOrder/Lineltems/Lineltem' PASSING p.OBJECT VALUE
COLUMNS description VARCHAR2 (256) PATH 'Description') 1i;

Such queries are evaluated using function sys_orderkey_depth, which returns
the depth of the order-key value. Because the order index uses two columns, the
index needed is a composite index over columns ORDER_KEY and RID, as well as
over function sys_orderkey_depth applied to the ORDER_KEY value. For
example:

CREATE INDEX depth_ix ON my_path_table
(RID, sys_orderkey depth(ORDER_KEY), ORDER_KEY) ;

See Also: Example 6-27 on page 6-27 for an example that shows the
use of sys_orderkey_depth

Indexing XMLType Data 6-33



XMLIndex

Guidelines for Using XMLIndex with a Structured Component

The following are some guidelines for using XML Index with a structured component.

s Use XMLIndex with a structured component to project and index XML data as
relational columns. Do not use function-based indexes; they are deprecated for use
with XML. See "Function-Based Indexes" on page 6-5.

= Ensure data type correspondence between a query and an XMLIndex index that
has a structured component. See "Data Type Considerations for XMLIndex
Structured Component" on page 6-11.

s If you create a relational view over XML Type data (for example, using SQL
function XMLTable), then you consider also creating an XMLIndex index with a
structured component that targets the same relational columns. See Chapter 19,
"XMLType Views".

= Instead of using a single XQuery expression for both fragment extraction and
value filtering (search), use SQL/XML function XMLQuery in the SELECT clause
to extract fragments and XMLExists in the WHERE clause to filter values.

This lets Oracle XML DB evaluate fragment extraction functionally or by using
streaming evaluation. For value filtering, this lets Oracle XML DB pick up an
XMLIndex index that has a relevant structured component.

= To order query results, use a SQL ORDER BY clause, together with SQL/XML
function XMLTable. Avoid using the XQuery order by clause. This is
particularly pertinent if you use an XMLIndex index with a structured component.

XMLIndex Partitioning and Parallelism

If you partition an XMLType table, or a table with an XMLType column using range or
list partitioning, you can also create an XMLIndex index on the table. If you use the
keyword LOCAL when you create the XML Index index, then the index and all of its
storage tables are locally equipartitioned with respect to the base table.

If you do not use the keyword LOCAL, then you cannot create an XMLIndex index on a
partitioned table. Also, if you hash-partition a table, then you cannot create an
XMLIndex index on it.

You can use a PARALLEL clause (with optional degree) when creating or altering an
XMLIndex index to ensure that index creation and maintenance are carried out in
parallel. If the base table is partitioned or enabled for parallelism, then this can
improve the performance for both DML operations (INSERT, UPDATE, DELETE) and
index DDL operations (CREATE, ALTER, REBUILD).

Specifying parallelism for an index can also consume more storage, because storage
parameters apply separately to each query server process. For example, an index
created with an INITIAL value of 5M and a parallelism degree of 12 consumes at least
60M of storage during index creation.

The syntax for the parallelism clause for CREATE INDEX and ALTER INDEX is the
same as for other domain indexes:

{ NOPARALLEL | PARALLEL [ integer ] }

Example 6-34 creates an XMLIndex index with a parallelism degree of 10. If the base
table is partitioned, then this index is equipartitioned.

Example 6-34 Creating an XMLIndex Index in Parallel
CREATE INDEX po_xmlindex_ix ON sale_info (sale_po_clob) INDEXTYPE IS XDB.XMLIndex

6-34 Oracle XML DB Developer's Guide



XMLIndex

LOCAL PARALLEL 10;

In Example 6-34, the path table and the secondary indexes are created with the same
parallelism degree as the XML Index index itself, 10, by inheritance. You can specify
different parallelism degrees for these by using separate PARALLEL clauses.

Example 6-35 demonstrates this. Again, because of keyword LOCAL, if the base table is
partitioned, then this index is equipartitioned.

Example 6-35 Using Different PARALLEL Degrees for XMLIndex Internal Objects

CREATE INDEX po_xmlindex_ix ON sale_info (sale_po_clob) INDEXTYPE IS XDB.XMLIndex
LOCAL PARAMETERS ('PATH TABLE po_path_table (PARALLEL 10)
PIKEY INDEX po_pikey_ix
VALUE INDEX po_value_ix (PARALLEL 5)') NOPARALLEL;

In Example 6-35, the XML Index index itself is created serially, because of
NOPARALLEL. The secondary index po_pikey_ix is also populated serially, because
no parallelism is specified explicitly for it; it inherits the parallelism of the XMLIndex
index. The path table itself is created with a parallelism degree of 10, and the
secondary index value column, po_value_ix, is populated with a degree of 5, due to
their explicit parallelism specifications.

Any parallelism you specify for an XMLIndex index, its path table, or its secondary
indexes is exploited during subsequent DML operations and queries.

Note that there are two places where you can specify parallelism for XMLIndex:
within the PARAMETERS clause parenthetical expression and after it.

See Also:

»  Oracle Database SQL Language Reference for information on the
CREATE INDEX parallel clause

s "PARAMETERS Clause for CREATE INDEX and ALTER INDEX"
on page 6-38 for the syntax of the PARAMETERS clause

= "Structured and Unstructured XMLIndex Components" on
page 6-9

Asynchronous (Deferred) Maintenance of XMLIndex Indexes

This feature applies to an XMLIndex index that has only an unstructured component. If
you specify asynchronous maintenance for an XMLIndex index that has a structured
component, then an error is raised.

By default, XML Index indexing is updated (maintained) at each DML operation, so
that it remains in sync with the base table. In some situations, you might not require
this, and using possibly stale indexes might be acceptable. In that use case, you can
decide to defer the cost of index maintenance, performing at commit time only or at
some time when database load is reduced. This can improve DML performance. It can
also improve index maintenance performance by enabling bulk loading of
unsynchronized index rows when an index is synchronized.

Using a stale index has no effect, other than performance, on DML operations. It can
have an effect on query results, however: If the index is not up-to-date at query time,
then the query results might not be up-to-date either. Even if only one column of a
base table is of data type XMLType, all queries on that table reflect the database data as
of the last synchronization of the XMLIndex index on the XMLType column.

You can specify index maintenance deferment using the parameters clause of a
CREATE INDEX or ALTER INDEX statement.

Indexing XMLType Data 6-35



XMLIndex

Be aware that even if you defer synchronization for an XMLIndex index, the following
database operations automatically synchronize the index:

= Any DDL operation on the index - ALTER INDEX or creation of secondary
indexes

s Any DDL operation on the base table - ALTER TABLE or creation of another index

Table 6-7 lists the synchronization options and the ASYNC clause syntax you use to
specify them. The ASYNC clause is used in the PARAMETERS clause of a CREATE
INDEX or ALTER INDEX statement for XMLIndex.

Table 6-7 Index Synchronization

When to Synchronize ASYNC Clause Syntax

Always ASYNC (SYNC ALWAYS)

This is the default behavior. You can specify it explicitly, to cancel a
previous ASYNC specification.

Upon commit ASYNC (SYNC ON COMMIT)

Periodically ASYNC (SYNC EVERY "repeat interval")

repeat_interval is the same as for the calendaring syntax of
DBMS__SCHEDULER

To use EVERY, you must have the CREATE JOB privilege.
Manually, on demand ASYNC (SYNC MANUAL)

You can manually synchronize the index using PL/SQL procedure
DBMS_XMLINDEX. SyncIndex.

Optional ASYNC syntax parameter STALE is intended for possible future use; you need
never specify it explicitly. It has value FALSE whenever ALWAYS is used; otherwise it
has value TRUE. Specifying an explicit STALE value that contradicts this rule raises an
error.

Example 6-36 creates an XMLIndex index that is synchronized every Monday at 3:00
pm, starting tomorrow.

Example 6-36 Specifying Deferred Synchronization for XMLIndex

CREATE INDEX po_xmlindex_ix ON po_clob (OBJECT_VALUE) INDEXTYPE IS XDB.XMLIndex
PARAMETERS ('ASYNC (SYNC EVERY "FREQ=HOURLY; INTERVAL = 1")');

Example 6-37 manually synchronizes the index created in Example 6-36.

Example 6-37 Manually Synchronizing an XMLIndex Index using SYNCINDEX
EXEC DBMS_XMLINDEX.SyncIndex('OE', 'PO_XMLINDEX IX', REINDEX => TRUE);

When XMLIndex index synchronization is deferred, all DML changes (inserts,
updates, and deletions) made to the base table since the last index synchronization are
recorded in a pending table, one row per DML operation. The name of this table is the
value of column PEND_TABLE_NAME of static public views USER_XML_ INDEXES,
ALL_XML_INDEXES, and DBA_XML_INDEXES.

You can examine this table to determine when synchronization might be appropriate
for a given XMLIndex index. The more rows there are in the pending table, the more
the index is likely to be in need of synchronization.

6-36 Oracle XML DB Developer's Guide



XMLIndex

If the pending table is large, then setting parameter REINDEX to TRUE when calling
SyncIndex, as in Example 6-37, can improve performance. When REINDEX is TRUE,
all of the secondary indexes are dropped and then re-created after the pending table
data is bulk-loaded.

See Also:

»  Oracle Database PL/SQL Packages and Types Reference, section
"Calendaring Syntax", for the syntax of repeat_interval

»  Oracle Database PL/SQL Packages and Types Reference for
information on PL/SQL procedure DBMS_
XMLINDEX.SyncIndex

Collecting Statistics on XMLIndex Objects for the Cost-Based Optimizer

The Oracle Database cost-based optimizer determines how to most cost-effectively
evaluate a given query, including which indexes, if any, to use. For it to be able to do
this accurately, you must collect statistics on various database objects.

For XMLIndex, you normally need to collect statistics on only the base table on which
the XML Index index is defined (using, for example, procedure DBMS_
STATS.gather_table_stats). This automatically collects statistics for the
XMLIndex index itself, as well as the path table, its secondary indexes, and any
structured component content tables and their secondary indexes.

If you delete statistics on the base table (using procedure DBMS_STATS.delete_
table_stats), then statistics on the other objects are also deleted. Similarly, if you
collect statistics on the XML Index index (using procedure DBMS_STATS .gather_
index_stats), then statistics are also collected on the path table, its secondary
indexes, and any structured component content tables and their secondary indexes.

Example 6-38 collects statistics on the base table po_c1lob. Statistics are automatically
collected on the XML Index index, its path table, and the secondary path-table indexes.

Example 6-38 Automatic Collection of Statistics on XMLIndex Objects
CALL DBMS_STATS.gather_ table stats(USER, 'PO_CLOB', ESTIMATE PERCENT => NULL);

See Also: "Data Dictionary Static Public Views Related to
XMLIndex" on page 6-37 for information about database views that
record statistics information for an XMLIndex index

Data Dictionary Static Public Views Related to XMLIndex

Information about the standard database indexes is available in static public views
USER_INDEXES, ALL_INDEXES, and DBA_INDEXES. Similar information about
XMLIndex indexes is available in static public views USER_XML_INDEXES, ALL_XML_
INDEXES, and DBA_XML_INDEXES.

Table 6-8 describes the columns in each of these views.

Table 6-8 XMLIndex Static Public Views

Column Name Type Description

ASYNC VARCHAR2 Asynchronous index updating specification. See
"Asynchronous (Deferred) Maintenance of XMLIndex
Indexes" on page 6-35.

Indexing XMLType Data 6-37



XMLIndex

Table 6-8 (Cont.) XMLIndex Static Public Views

Column Name Type Description

EX_OR_INCLUDE  VARCHAR2 Path subsetting:
= FULLY_IX - The index uses no path subsetting.
= EXCLUDE - The index uses only exclusion subsetting.

= INCLUDE - The index uses only inclusion subsetting.

INDEX_NAME VARCHAR2 Name of the XML Index index.

INDEX_OWNER VARCHAR2 Owner of the index. Not available for USER_XMI._ INDEXES.

INDEX_TYPE VARCHAR2 The types of components the index is composed of:
STRUCTURED, UNSTRUCTURED, or STRUCTURED AND
UNSTRUCTURED.

PARAMETERS XMLType Information from the PARAMETERS clause that was used to

create the index.

If an unstructured XMLIndex component is present, the
PARAMETERS clause can include the set of XPath paths

defining path-subsetting and the name of a scheduler job for

synchronization.

If a structured component is present, the PARAMETERS
clause includes the name of the structure group and the
table definitions provided by XMLTable, including the
XQuery expressions that define the columns.

PATH_TABLE_NAME VARCHAR2 Name of the XML Index path table.

PEND_TABLE_NAME VARCHAR2 Name of the table that records base-table DML operations
since the last index synchronization. See "Asynchronous
(Deferred) Maintenance of XMLIndex Indexes" on

page 6-35.
TABLE_NAME VARCHAR2 Name of the base table on which the index is defined.
TABLE_OWNER VARCHAR2 Owner of the base table on which the index is defined.

These views provide information about an XMLIndex index, but there is no single

catalog view that provides information about the statistics gathered for an XMLIndex

index. This statistics information is distributed among the following views:

s USER_INDEXES, ALL_INDEXES, DBA_INDEXES — Column LAST ANALYZED
provides the date when the XML Index index was last analyzed.

s USER_TAB_STATISTICS,ALL_TAB_STATISTICS, DBA_TAB_STATISTICS —
Column TABLE_NAME provides information about the structured and
unstructured components of an XMLIndex index. For information about the

structured or unstructured component, query using the name of the path table or

the XML Table table as TABLE_NAME, respectively.

s USER_IND_STATISTICS,ALL_IND_STATISTICS, DBA_IND_STATISTICS —

Column INDEX_NAME provides information about each of the secondary indexes

for an XMLIndex index. for information about a given secondary index, query
using the name of th