

Oracle® Retail Data Model
Implementation and Operations Guide

Release 11.3.2

E20363-03

January 2013

Oracle Retail Data Model Implementation and Operations Guide, Release 11.3.2

E20363-03

Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Thomas Van Raalte

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Oracle Retail Data Model contains the ARTS Data Model licensed to Oracle by ARTS.

iii

Contents

1 Introduction to Oracle Retail Data Model Customization

What is the Oracle Retail Data Model? .. 1-1
Components of the Oracle Retail Data Model ... 1-2
Oracle Products That Make Up Oracle Retail Data Model ... 1-2

Steps for Implementing an Oracle Retail Data Model Warehouse .. 1-3
Before You Begin Customizing the Oracle Retail Data Model ... 1-4

Prerequisite Knowledge for Implementors .. 1-4
Responsibilities of a Data Warehouse Governance Committee.. 1-5

Managing Metadata for Oracle Retail Data Model ... 1-6
Metadata Categories and Standards ... 1-6
Working with a Metadata Repository... 1-7
Browsing the Metadata Repository Supplied With Oracle Retail Data Model......................... 1-7
Using the Metadata Generation Packages.. 1-9
Using Oracle Warehouse Builder with the Oracle Retail Data Model 1-9

Performing Fit-Gap Analysis for Oracle Retail Data Model .. 1-10

2 Physical Model Customization

Characteristics of the Default Physical Model ... 2-1
Customizing the Oracle Retail Data Model Physical Model... 2-3

Questions to Answer Before You Customize the Physical Model .. 2-4
Conventions When Customizing the Physical Model .. 2-4

Foundation Layer Customization.. 2-5
Common Change Scenarios When Customizing the Foundation Layer of Oracle Retail Data
Model 2-6
Example of Changing the Foundation Layer of the Oracle Retail Data Model 2-7

General Recommendations When Designing Physical Structures .. 2-8
Tablespaces in Oracle Retail Data Model ... 2-8
Data Compression in Oracle Retail Data Model.. 2-9

Types of Data Compression Available .. 2-9
Basic or Standard Compression .. 2-9
OLTP Compression .. 2-9
Hybrid Columnar Compression (HCC) ... 2-10

Surrogate Keys in the Physical Model ... 2-10
Integrity Constraints in Oracle Retail Data Model... 2-11
Indexes and Partitioned Indexes in Oracle Retail Data Model .. 2-11
Partitioned Tables in Oracle Retail Data Model ... 2-12

iv

Partitioning the Oracle Retail Data Model for Manageability .. 2-13
Partitioning the Oracle Retail Data Model for Easier Data Access................................... 2-13
Partitioning the Oracle Retail Data Model for Join Performance 2-13

Parallel Execution in Oracle Retail Data Model ... 2-14
Enabling Parallel Execution for a Session .. 2-16
Enabling Parallel Execution of DML Operations .. 2-16
Enabling Parallel Execution at the Table Level ... 2-17

3 Access Layer Customization

Introduction to Customizing the Access Layer of Oracle Retail Data Model 3-1
Derived Tables in the Oracle Retail Data Model ... 3-1

Creating New Derived Tables for Calculated Data .. 3-2
Customizing Oracle Retail Data Model Data Mining Models... 3-2

Creating a New Data Mining Model for Oracle Retail Data Model.................................... 3-2
Modifying Oracle Retail Data Model Data Mining Models ... 3-3
Tutorial: Customizing the Customer Life Time Value Prediction Data Mining Model ... 3-3

Tutorial Prerequisites .. 3-4
Preparing Your Environment .. 3-4
Generating the Model ... 3-7
Checking the Result... 3-8

Dimensional Components in the Oracle Retail Data Model... 3-9
Characteristics of a Dimensional Model ... 3-9
Characteristics of Relational Star and Snowflake Tables .. 3-10

Declaring Relational Dimension Tables ... 3-11
Validating Relational Dimension Tables .. 3-11

Characteristics of the OLAP Dimensional Model .. 3-12
Oracle OLAP Cube Views .. 3-13
Cube Materialized Views.. 3-14

Characteristics of the OLAP Cubes in Oracle Retail Data Model .. 3-15
Defining New Oracle OLAP Cubes for Oracle Retail Data Model .. 3-16
Changing an Oracle OLAP Cube in Oracle Retail Data Model ... 3-17
Creating a Forecast Cube for Oracle Retail Data Model ... 3-17
Choosing a Cube Partitioning Strategy for Oracle Retail Data Model.................................... 3-17
Choosing a Cube Data Maintenance Method for Oracle Retail Data Model 3-18

Materialized Views in the Oracle Retail Data Model .. 3-19
Types of Materialized Views and Refresh options... 3-20

Refresh Options for Materialized Views with Aggregates .. 3-20
Refresh Options for Materialized Views Containing Only Joins...................................... 3-21
Refresh Options for Nested Materialized Views... 3-22

Choosing Indexes for Materialized Views .. 3-22
Partitioning and Materialized Views ... 3-22
Compressing Materialized Views... 3-24

4 ETL Implementation and Customization

The Role of ETL in the Oracle Retail Data Model ... 4-1
Creating Source-ETL for Oracle Retail Data Model .. 4-2

Source-ETL Design Considerations... 4-3

v

ETL Architecture for Oracle Retail Data Model Source-ETL... 4-4
Creating a Source to Target Mapping Document for the Source-ETL 4-4
Designing a Plan for Rectifying Source-ETL Data Quality Problems .. 4-5
Designing Source-ETL Workflow and Jobs Control ... 4-5
Designing Source-ETL Exception Handling .. 4-5
Writing Source-ETL that Loads Efficiently .. 4-6

Using a Staging Area for Flat Files ... 4-6
Preparing Raw Data Files for Source-ETL... 4-6
Source-ETL Data Loading Options .. 4-7
Parallel Direct Path Load Source-ETL ... 4-8
Partition Exchange Load for Oracle Retail Data Model Source-ETL 4-8

Customizing Intra-ETL for the Oracle Retail Data Model ... 4-9
ORDM_DERIVED_FLW .. 4-10
ORDM_AGG_N_DEP_FLW.. 4-11
ORDM_AGG_DEP_FLW ... 4-12
OLAP_MAP Mapping Flow .. 4-13
ORDM_MNNG_FLW... 4-14

Performing an Initial Load of an Oracle Retail Data Model Warehouse 4-14
Executing the Default Oracle Retail Data Model Intra-ETL ... 4-16

Executing the ORDM_INTRA_ETL_FLW Workflow from Oracle Warehouse Builder 4-17
Executing the Intra-ETL Without Using Oracle Warehouse Builder 4-17

Executing the Intra-ETL by Using the PKG_INTRA_ETL_PROCESS.RUN Procedure....
4-17

Refreshing the Data in Oracle Retail Data Model Warehouse... 4-18
Refreshing Oracle Retail Data Model Relational Tables and Views.. 4-18
Refreshing Oracle Retail Data Model OLAP Cubes... 4-19
Refreshing Oracle Retail Data Model Data Mining Models ... 4-19

Managing Errors During Oracle Retail Data Model Intra-ETL Execution 4-20
Monitoring the Execution of the Intra-ETL Process... 4-20
Recovering an Intra ETL Process .. 4-21
Troubleshooting Intra-ETL Performance... 4-21

Checking the Execution Plan.. 4-22
Monitoring PARALLEL DML Executions.. 4-22
Troubleshooting Data Mining Model Creation... 4-22

5 Report and Query Customization

Reporting Approaches in Oracle Retail Data Model .. 5-1
Customizing Oracle Retail Data Model Reports.. 5-2
Writing Your Own Queries and Reports.. 5-3
Optimizing Star Queries... 5-4
Troubleshooting Oracle Retail Data Model Report Performance .. 5-6
Writing As Is and As Was Queries .. 5-6

Characteristics of an As Is Query... 5-7
Characteristics of an As Was Query.. 5-7
Examples: As Is and As Was Queries ... 5-7

Tutorial: Creating a New Oracle Retail Data Model Dashboard .. 5-12
Tutorial: Creating a New Oracle Retail Data Model Report .. 5-20

vi

6 Metadata Collection and Reports

Metadata Collection and Population.. 6-1
Load LDM/PDM Metadata (Table MD_ENTY).. 6-5

GIVE_ABBRV .. 6-5
MD_DM_ALL_ENT_ATTR... 6-5
PL/SQL Program to Update Column Name .. 6-6
PL/SQL program to insert initial data into MD_OIDM_ATTR_COL_NAM.................... 6-6
PL/SQL program to load data into MD_ENTY ... 6-6

Load Program (Intra-ETL) Metadata (Table MD_PRG) ... 6-6
Load Reports and KPI Metadata (Table MD_KPI and MD_REF_ENTY_KPI): 6-7

Metadata Reports and Dashboard .. 6-9

7 Multi-Currency Support and Configuration

Multi-Currency Overview .. 7-1
Multi-Currency Data Field Naming Conventions ... 7-2
Multi-Currency Data Movement... 7-3

Movement from Interface to Base Tables ... 7-3
Handling Currency at the Base Level .. 7-3

Movement from Base to Derived Tables .. 7-3
Movement from Derived to Aggregate Tables .. 7-4

Handling Data Movement from Base to Derived and Aggregate Layers 7-4
Currency Data Flow ... 7-4
Currency DWC_CRNCY_CONF Table .. 7-4

A Sizing and Configuring an Oracle Retail Data Model Warehouse

Sizing an Oracle Retail Data Model Warehouse ... A-1
Configuring a Balanced System for Oracle Retail Data Model ... A-3

Maintaining High Throughput in an Oracle Retail Data Model Warehouse........................... A-3
Configuring I/O in an Oracle Retail Data Model for Bandwidth not Capacity A-3
Planning for Growth of Your Oracle Retail Data Model... A-4
Testing the I/O System Before Building the Oracle Retail Data Model Warehouse A-4
Balanced Hardware Configuration Guidelines for Oracle Retail Data Model A-4

Index

vii

viii

List of Examples

3–1 Adding a New Column to a Mining Model in Oracle Retail Data Model.......................... 3-3
3–2 Refreshing Oracle Retail Data Model Nested Materialized Views................................... 3-22
4–1 Using Exchange Partition Statement with a Partitioned Table .. 4-8
4–2 Troubleshooting an ORA-20991 Error for Oracle Retail Data Model 4-23
4–3 Troubleshooting the "Message not available ... [Language=ZHS]" Error........................ 4-23
4–4 Troubleshooting an ORA-40113 Error for Oracle Retail Data Model 4-23
4–5 Troubleshooting an ORA-40112 Error for Oracle Retail Data Model 4-24
4–6 Troubleshooting an ORG-11130 Error for Oracle Retail Data Model 4-24
5–1 Creating a Relational Query for Oracle Retail Data Model .. 5-3
5–2 Star Transformation.. 5-4
5–3 Troubleshooting a Report: A Table Does Not Exist... 5-6
5–4 Troubleshooting a Report: When the Database is Not Connected 5-6
5–5 As Is Query for Sales Split by Item Subclass.. 5-10
5–6 As Was Query for Sales Split by Item Subclass ... 5-10

ix

List of Figures

2–1 Layers of an Oracle Retail Data Model Warehouse ... 2-2
2–2 Partitioning for Join Performance.. 2-14
2–3 Parallel Execution of a Full Partition-Wise Join Between Two Tables............................. 2-15
2–4 Partial Partition-Wise Join .. 2-16
3–1 Oracle SQL Developer with ORDM_SYS Schema ... 3-5
3–2 Applying Filters .. 3-5
3–3 Review Tables to Ensure Valid Data.. 3-7
3–4 Checking the Result .. 3-8
3–5 Star Schema Diagram .. 3-11
3–6 Diagram of the OLAP Dimensional Model.. 3-13
4–1 ETL Flow Diagram.. 4-2
4–2 ORDM Main Intra-ETL Process Flow ... 4-10
4–3 Intra-ETL Derived Process Flow.. 4-11
4–4 Intra-ETL Independent MV Process Flow.. 4-12
4–5 Intra-ETL Aggregate Process Flow.. 4-13
4–6 OLAP Map Process Flow .. 4-14
4–7 Mining Flow Process ... 4-14
5–1 New Dashboard Start: BIEE Home ... 5-13
5–2 New Dashboard: Enter Name .. 5-13
5–3 New Dashboard: Catalog View ... 5-14
5–4 New Dashboard: Catalog View with New Reports Vertical ... 5-15
5–5 New Dashboard: Catalog View with New Reports Horizontal.. 5-16
5–6 New Dashboard: Select Name for Page.. 5-17
5–7 New Dashboard: Enter New Page Name... 5-18
5–8 New Dashboard: Rename Page Dialog... 5-19
5–9 New Dashboard: Display with Two New Reports ... 5-20
5–10 Analysis Report: Welcome Page with New Menu.. 5-21
5–11 Analysis Report: Welcome Page with Select Subject Area Menu..................................... 5-21
5–12 Analysis Report: Welcome Page with Selected Columns .. 5-22
5–13 Analysis Report: Results View of Report ... 5-23
5–14 New Report: Create New View ... 5-24
5–15 New Report: Final View of New Reports... 5-25
7–1 Currency and Transaction Amount Data Flow in Oracle Retail Data Model.................... 7-4

x

xi

Preface

The Oracle Retail Data Model Implementation and Operations Guide describes best
practices for implementing a data warehouse based on the Oracle Retail Data Model.

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Related Oracle Resources

■ Conventions

Audience
This document is intended for business analysts, data modelers, data warehouse
administrators, IT staff, and ETL developers who implement an Oracle Retail Data
Model warehouse.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Oracle Resources
Oracle provides many resources for you when implementing the Oracle Retail Data
Model.

Oracle Retail Data Model Documentation Set
For more information on Oracle Retail Data Model, see the following documents in the
Oracle Retail Data Model Release 11g documentation set:

■ Oracle Retail Data Model Installation Guide

xii

■ Oracle Retail Data Model Reference

■ Oracle Retail Data Model Release Notes

Oracle Technology Network
Visit the Oracle Technology Network (OTN to access to demos, whitepapers, Oracle By
Example (OBE) tutorials, updated Oracle documentation, and other collateral.

Registering on OTN

You must register online before using OTN, Registration is free and can be done at

www.oracle.com/technetwork/index.html

Oracle Documentation on OTN

The Oracle Documentation site on OTN provides access to Oracle documentation.
After you have a user name and password for OTN, you can go directly to the
documentation section of the OTN Web site at

www.oracle.com/technetwork/indexes/documentation/index.html

Oracle Learning Library on OTN

The Oracle Learning Library provides free online training content (OBEs, Demos and
Tutorials). After you have a user name and password for OTN, you can go directly to
the Oracle Learning Library Web site at

www.oracle.com/technetwork/tutorials/index.html

Then you can search for a tutorial or demo (within "All") by name.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to Oracle Retail Data Model Customization 1-1

1Introduction to Oracle Retail Data Model
Customization

This chapter provides an introduction to customizing the Oracle Retail Data Model. It
contains the following topics:

■ What is the Oracle Retail Data Model?

■ Steps for Implementing an Oracle Retail Data Model Warehouse

■ Before You Begin Customizing the Oracle Retail Data Model

■ Managing Metadata for Oracle Retail Data Model

■ Performing Fit-Gap Analysis for Oracle Retail Data Model

What is the Oracle Retail Data Model?
Oracle Retail Data Model is a standards-based, pre-built approach to retail data
warehousing enabling a retail company to gain insight from their data more quickly.
Oracle Retail Data Model reduces costs for both immediate and on-going operations
by leveraging out-of-box Oracle based data warehouse and business intelligence
solutions, making world-class database and business intelligence technology solutions
available with a retail specific data model. You can use Oracle Retail Data Model in
any application environment. Also, you can easily extend the model.

Using Oracle Retail Data Model you can jump-start the design and implementation of
an Oracle Retail Data Model warehouse to quickly achieve a positive ROI for your
data warehousing and business intelligence project with a predictable implementation
effort.

Oracle Retail Data Model provides the following features:

■ Enterprise wide data model for retail industry

– Over 1,250 tables and 18,500 attributes

– Over 1,800 industry measures and KPIs

– Based on ARTS 6.0

■ Prebuilt mining models, OLAP cubes, and reports

■ Automatic data movement across the warehouse (Intra-ETL)

■ Easily extensible and customizable

■ Usable within any retail application

■ Metadata Browser with Refresh

What is the Oracle Retail Data Model?

1-2 Oracle Retail Data Model Implementation and Operations Guide

Oracle Retail Data Model provides much of the data modeling work that you must do
for a retail business intelligence solution. The Oracle Retail Data Model logical and
physical data models were designed following best practices for retail service
providers. Oracle Retail Data Model is based on the ARTS 6.0 standard.

■ Components of the Oracle Retail Data Model

■ Oracle Products That Make Up Oracle Retail Data Model

Components of the Oracle Retail Data Model
Oracle Retail Data Model includes the following components which are described in
detail in Oracle Retail Data Model Reference:

■ Logical model which is a third normal form (3NF) entity-object standards-based
model.

■ Physical model defined as an Oracle Database schema.

■ Intra-ETL database packages and SQL scripts to extract, transform, and load (ETL)
data from the Oracle Retail Data Model 3NF physical tables to the Oracle Retail
Data Model derived and aggregate objects.

■ Sample reports and dashboards developed using Oracle Business Intelligence
Suite Enterprise Edition.

■ Data Mining Models models for: Employee Analysis, Customer Analysis, Store
Analysis, Item Analysis, and Product Analysis.

■ DDL and installation scripts.

Oracle Products That Make Up Oracle Retail Data Model
Several Oracle technologies are involved in building the infrastructure for Oracle
Retail Data Model:

■ Oracle Database with OLAP, Data Mining and Partitioning Option

■ Oracle Development Tools

■ Oracle Business Intelligence Suite Enterprise Edition Presentation Tools

Oracle Database with OLAP, Data Mining and Partitioning Option
Oracle Retail Data Model uses a complete Oracle technical stack. It leverages the
following data warehousing features of the Oracle Database: compression,
partitioning, advanced statistical functions, materialized views, data mining, and
online analytical processing (OLAP).

Oracle Development Tools
You can use the following Oracle tools to customize the predefined physical models
provided with Oracle Retail Data Model, or to populate the target relational tables and
materialized cube views.

See: Oracle Retail Data Model Reference for detailed information about
the Oracle Retail Data Model components.

Oracle Retail Data Model Installation Guide for detailed information on
the different types of Oracle Retail Data Model installation.

Steps for Implementing an Oracle Retail Data Model Warehouse

Introduction to Oracle Retail Data Model Customization 1-3

Oracle Business Intelligence Suite Enterprise Edition Presentation Tools
Oracle Business Intelligence Suite Enterprise Edition is a comprehensive suite of
enterprise BI products that delivers a full range of analysis and reporting capabilities.
You can use Oracle Business Intelligence Suite Enterprise Edition Answers and
Dashboard presentation tools to customize the predefined dashboard reports that are
provided with Oracle Retail Data Model.

Steps for Implementing an Oracle Retail Data Model Warehouse
Although Oracle Retail Data Model was designed following best practices for retailers,
usually the model requires some customization to meet your business needs.

The reasons that you might customize Oracle Retail Data Model include: your
business does not have a business area that is in the logical model of Oracle Retail
Data Model, or you must apply a new or different business rule. Typical physical
model modifications include: adding, deleting, modifying tables; or altering foreign
keys, constraints, or indexes.

To implement an Oracle Retail Data Model warehouse, take the following steps:

1. Perform the organizational tasks outlined in "Before You Begin Customizing the
Oracle Retail Data Model" on page 1-4.

2. Create a fit-gap analysis report by following the process outlined "Performing
Fit-Gap Analysis for Oracle Retail Data Model" on page 1-10.

3. In a development environment, install a copy of the Oracle Retail Data Model.

4. In the copy of the Oracle Retail Data Model you created in Step 3, customize
Oracle Retail Data Model by making the changes you documented in the fit-gap
analysis report. Make the changes in the following order:

a. Foundation layer of the physical model and the ETL to populate that layer.
When customizing the physical objects, follow the guidelines in "Foundation
Layer Customization" on page 2-5. When writing the ETL, follow the
guidelines in "Creating Source-ETL for Oracle Retail Data Model" on page 4-2.

b. Access layer of the physical model and the ETL to populate that layer. When
designing the physical objects, follow the guidelines in Chapter 3, "Access
Layer Customization." When writing the ETL, follow the guidelines in
"Customizing Intra-ETL for the Oracle Retail Data Model" on page 4-9.

5. In a test environment, make a copy of your customized version of Oracle Retail
Data Model. Then, following the documentation you created in Step 2, test the
customized version of Oracle Retail Data Model.

6. Following your typical procedures, roll the tested customized version of Oracle
Retail Data Model out into pre-production and, then, production.

Table 1–1 Oracle Development Tools Used with Oracle Retail Data Model

Name Use

SQL Developer or SQL*Plus To modify, customize, and extend database objects

Oracle Warehouse Builder For the process control of the intra ETL process

Analytic Workspace Manager To view, create, develop, and manage OLAP dimensional
objects.

See: "Reporting Approaches in Oracle Retail Data Model" on
page 5-1.

Before You Begin Customizing the Oracle Retail Data Model

1-4 Oracle Retail Data Model Implementation and Operations Guide

Before You Begin Customizing the Oracle Retail Data Model
Before you begin customizing Oracle Retail Data Model, ensure the following teams
and committees exist:

■ Data warehouse governance steering committee. This steering committee has the
responsibilities outlined in "Responsibilities of a Data Warehouse Governance
Committee" on page 1-5.

■ Implementation team. This team consists of IT engineers who have the expertise
outlined in "Prerequisite Knowledge for Implementors" on page 1-4. This team has
the responsibilities outlined in "Steps for Implementing an Oracle Retail Data
Model Warehouse" on page 1-3.

■ Fit-gap analysis team. This team consists of business analysts who can identify the
business requirements and scope of the Oracle Retail Data Model and at least
some engineers in the Implementation team. Business members of this team must
understand logical data modeling so that they can evaluate what changes must be
made to the foundation and access layers of the physical model. This team has the
responsibilities outlined in "Performing Fit-Gap Analysis for Oracle Retail Data
Model" on page 1-10.

After these teams and committees are formed:

■ Discuss the approach and determine the involvement and roles of every party
involved in the customization (for example, business and IT).

■ Agree on the scope of the project (that is, agree on what new data must be in the
data warehouse and why it is needed).

■ Agree on the timing and the working arrangements.

Prerequisite Knowledge for Implementors
As outlined in "Oracle Products That Make Up Oracle Retail Data Model" on page 1-2,
the Oracle Retail Data Model uses much of the Oracle stack. Consequently, to
successfully implement the Oracle Retail Data Model, the implementation team needs:

■ Experience performing information and data analysis and data modeling.
(Experience using Oracle SQL Developer Data Modeler, is a plus.)

■ An understanding of the Oracle technology stack, especially data warehouse
(Database, Data Warehouse, OLAP, Data Mining, Warehouse Builder, Oracle
Business Intelligence Suite Enterprise Edition)

■ Hands-on experience using:

■ Oracle Database

■ PL/SQL

■ SQL DDL and DML syntax

■ Analytic Workspace Manager

■ Oracle SQL Developer Data Modeler

Note: Keep 'clean' copies of the components delivered with Oracle
Retail Data Model. This is important when upgrading to later versions
of Oracle Retail Data Model.

Before You Begin Customizing the Oracle Retail Data Model

Introduction to Oracle Retail Data Model Customization 1-5

■ Oracle Business Intelligence Suite Enterprise Edition Administrator, Answers,
and Dashboards

■ One implementation team member is familiar or has training with Oracle Retail
Data Model, or the team engages a partner with Oracle Retail Data Model
implementation experience.

Responsibilities of a Data Warehouse Governance Committee
Governance is of concern to any enterprise, executive team or individual with an
interest in the processes, standards, and compliance. It is even more important to
organizations that have invested in data warehousing.

Data warehouse governance occurs within the context of overall IT governance. It
provides the necessary policies, process and procedures, which must be clearly
communicated to the entire corporation, from the IT employees to the front-end
operational personnel.

Before you customize Oracle Retail Data Model, setup a data warehouse governance
steering committee if one does not exist. The role of this steering committed is to
oversee the data warehouse to provide an environment that reaches across the
enterprise and drives the best business value.

Data Warehouse Governance Committee: Overall Responsibilities
The data warehouse governance steering committee sets the direction and is
responsible for the governance framework, including the following areas:

■ The entire data warehouse life cycle

■ The data to process and the data to make available to end-users

■ The minimum quality criteria for the data that is available to end users and how to
measure and analyze these criteria against the quality of the data that is the source
data for the data warehouse.

■ The business goals of the organization to apply core information from the data
warehouse.

■ The policies, procedures, and standards for data resources and data access.

■ The life cycle of data warehouse component management.

Data Warehouse Governance Committee: Data Governance Responsibilities
The more detailed focus in data warehouse governance is data governance. Data
governance tasks include:

■ Approving the data modeling standards, metadata standards and other related
standards. This includes determining a metadata strategy as discussed in
"Managing Metadata for Oracle Retail Data Model" on page 1-6' and identifying
the data modeling tools to use that support these standards.

■ Determining the data retention policy.

■ Designing a data access policy based on legal restrictions and data security rules.

■ Designing a data backup strategy that aligns with the impact analysis to the
business unit.

■ Monitoring and reporting on data usage, activity, and alerts.

Managing Metadata for Oracle Retail Data Model

1-6 Oracle Retail Data Model Implementation and Operations Guide

Managing Metadata for Oracle Retail Data Model
Metadata is any data about data and, as such, is an important aspect of the data
warehouse environment. Metadata allows the end user and the business analyst to
navigate through the possibilities without knowing the context of the data or what the
data represents.

Metadata management is a comprehensive, ongoing process of overseeing and
actively managing metadata in a central environment which helps an enterprise to
identify how data is constructed, what data exists, and what the data means. It is
particularly helpful to have good metadata management when customizing Oracle
Retail Data Model so that you can do impact analysis to ensure that changes do not
adversely impact data integrity anywhere in your data warehouse.

■ Metadata Categories and Standards

■ Working with a Metadata Repository

■ Browsing the Metadata Repository Supplied With Oracle Retail Data Model

■ Using the Metadata Generation Packages

■ Using Oracle Warehouse Builder with the Oracle Retail Data Model

Metadata Categories and Standards
Metadata is organized into three major categories:

■ Business metadata describes the meaning of data in a business sense. The
business interpretation of data elements in the data warehouse is based on the
actual table and column names in the database. Gather this mapping information
and business definition and rules information into business metadata.

■ Technical metadata represents the technical aspects of data, including attributes
such as data types, lengths, lineage, results from data profiling, and so on.

■ Process execution metadata presents statistics on the results of running the ETL
process itself, including measures such as rows loaded successfully, rows rejected,
amount of time to load, and so on.

Since metadata is so important in information management, many organizations
attempt to standardize metadata at various levels, such as:

■ Metadata Encoding and Transmission Standard (METS). A standard for encoding
descriptive, administrative, and structural metadata regarding objects within a
digital library.

■ American National Standards Institute (ANSI). The organization that coordinates
the U.S. voluntary standardization and conformity-assessment systems.

■ International Organization for Standardization (ISO). The body that establishes,
develops, and promotes standards for international exchange.

■ Common Warehouse Metamodel (CWM). A specification, released and owned by
the Object Management Group, for modeling metadata for relational,
non-relational, multi-dimensional, and most other objects found in a data
warehousing environment.

When you implement your metadata management solution, reference your data
warehouse infrastructure environment and make the decision which standard to
follow.

Managing Metadata for Oracle Retail Data Model

Introduction to Oracle Retail Data Model Customization 1-7

Working with a Metadata Repository
You manage metadata using a Metadata Repository. At the highest level, a Metadata
Repository includes three layers of information. The layers are defined in the
following order:

1. A Physical layer. This metadata layer identifies the source data.

2. A Business Model and Mapping layer. This metadata layer organizes the physical
layer into logical categories and records the appropriate metadata for access to the
source data.

3. The Presentation layer. This metadata layer exposes the business model entities for
end-user access.

The first step in creating a Metadata Repository is to scope your metadata
management needs by:

■ Identifying the metadata consumers. Typically, there are business consumers and
technical consumers.

■ Determine the business and technical metadata requirements.

■ Aligning metadata requirements to specific data elements and logical data flows.

Then:

■ Decide how important each part is.

■ Assign responsibility to someone for each piece.

■ Decide what constitutes a consistent and working set of metadata

■ Determine where to store, backup, and recover the metadata.

■ Ensure that each piece of metadata is available only to those people who need it.

■ Quality-assure the metadata and ensure that it is complete and up to date.

■ Identify the Metadata Repository to use and how to control that repository from
one place

After creating the metadata definitions, review your data architecture to ensure you
can acquire, integrate, and maintain the metadata.

As the data is updated in your data warehouse day by day, you need to update the
Metadata Repository. To change business rules, definitions, formulas or process
especially when customizing the Oracle Retail Data Model, your first step is to survey
the metadata and do an impact analysis to list all of the attributes in the data
warehouse environment that would be affected by a proposed change.

Browsing the Metadata Repository Supplied With Oracle Retail Data Model
To customize the Oracle Retail Data Model model, you must understand the
dependencies among Oracle Retail Data Model components, especially how the report
KPIs are mapped to the physical tables and columns and how that data has been
transformed through the intra-ETL.

Oracle Retail Data Model provides a tool called the "Oracle Retail Data Model
Metadata" browser that helps you discover these dependencies. When you install
Oracle Retail Data Model with and the sample reports, the metadata browser is
delivered as a Dashboard.

Managing Metadata for Oracle Retail Data Model

1-8 Oracle Retail Data Model Implementation and Operations Guide

There are four tabs (reports) in the Oracle Retail Data Model Metadata browser:

■ Measure-Entity tab: Business Areas and Measures Attributes and Entities

■ Entity-Measure tab: Entity to Attribute Measures

■ Program-Table tab

■ Table-Program tab

Measure-Entity tab: Business Areas and Measures Attributes and Entities
On the Measure-Entity tab the measure descriptions, computational formulas with
physical columns, physical tables, and corresponding entities can be viewed by
Business Area.

To browse the data, select the business area and measure description that you are
interested in.

Entity-Measure tab: Entity to Attribute Measures
The Entity-Measure tab displays the measures supported by the entities and how they
are calculated. You can discover information about particular entities and attributes.

For example, take the following steps to learn more about an entity:

1. Select the entity.

2. Click GO.

Program-Table tab
The Program-Table tab displays the input and output tables used in the selected
programs. For example, take the following steps to learn more about intra-ETL
mappings:

1. Select the program type (that is, intra-ETL or report) and program name for
showing particular report or intra-ETL information.

2. Select GO.

Table-Program tab
The Table-Program tab lists the Programs used by a given table and whether that table
is an input or output, or both, of that program.

To discover what reports use a particular table, you must move a particular table from
the right pane to the left (Selected) pane.

For example, to see the reports that use a particular table, take the following steps:

1. In the right pane of the Table-Program tab, select the table.

2. Move the table to the Selected list on the left by clicking on < (left arrow), and click
OK.

3. Select GO.

The reports for the selected table are displayed.

See: Oracle Retail Data Model Installation Guide for more information
on installing the sample reports and deploying the Oracle Retail Data
Model RPD and webcat on the Business Intelligence Suite Enterprise
Edition instance.

Managing Metadata for Oracle Retail Data Model

Introduction to Oracle Retail Data Model Customization 1-9

Using the Metadata Generation Packages
As described in "Browsing the Metadata Repository Supplied With Oracle Retail Data
Model" on page 1-7, Oracle Retail Data Model metadata browser lets you view and
analyze metadata through a set of BIEE reports to better understand relationships
between metadata objects and for end-to-end impact analysis.

You use the Oracle Retail Data Model metadata browser generation packages to
generate and update the Oracle Retail Data Model metadata browser.

There are four main tables and other staging tables and views in the metadata
generation package. The tables are: MD_ENTY, MD_PRG, MD_KPI, and MD_REF_
ENTY_KPI; these are the tables that support metadata browser reports.

For more information, see Chapter 6, "Metadata Collection and Reports".

Using Oracle Warehouse Builder with the Oracle Retail Data Model
Oracle Warehouse Builder provides excellent metadata management features that you
can use with Oracle Retail Data Model.

Before you import source metadata into Oracle Warehouse Builder, you create a
module to contain metadata definitions. The type of module you create depends on
the source from which you are importing metadata into your Metadata Repository.
Oracle Warehouse Builder supports many different sources and targets as discussed in
Oracle Warehouse Builder Sources and Targets Guide. For example, when connecting to an
Oracle database, Oracle Warehouse Builder queries the database dictionary to extract
all needed metadata on tables, views, sequences, dimensions, cubes, data types,
PL/SQL packages, and so on.

Oracle Warehouse Builder also provides an interface tool called the Metadata
Dependency Manager through which you can explore dependencies among data
objects, as represented by the metadata in your Oracle Warehouse Builder repository.
The Metadata Dependency Manager presents dependencies in the form of interactive
lineage and impact diagrams. A lineage diagram traces the data flows for an object
back to the sources and displays all objects along those paths. An impact diagram
identifies all the objects that are derived from the selected object.

Information provided by the Metadata Dependency Manager can help you in many
circumstances. For example:

1. Starting from a target object, such as a dimension, cube, or business intelligence
tool report, you can identify the columns in each data source that are used in
computing the results in the target.

2. You can assess the impact of design changes in an object such as a source table or a
pluggable mapping that is used throughout a project.

3. You can propagate a design change, such as a change to the data type of a source
table column, to downstream objects in the design.

Using end-to-end data lineage and impact analysis reduces project risk by allowing
better planning for design changes, faster identification of unanticipated impacts when
source systems change, and enabling more effective auditing of your business
intelligence results, master data or other data integration processes.

You can also define and use SQL-based or XML-based custom metadata stores to
retrieve definitions of source and target objects such as tables and views.

For data files extracted from some mainframe sources, Oracle Warehouse Builder can
interpret Cobol Copybook files that describes the structure of the data file, and create
its source metadata based on that.

Performing Fit-Gap Analysis for Oracle Retail Data Model

1-10 Oracle Retail Data Model Implementation and Operations Guide

Oracle Warehouse Builder application adapters or application connectors provide
additional metadata about ERP and CRM application sources.

Oracle Warehouse Builder can deploy or execute process flows and schedules to
Oracle Enterprise Manager and Oracle Workflow. In general, you can deploy a
schedule in any Oracle Database location (Oracle Database 11g or later).

Performing Fit-Gap Analysis for Oracle Retail Data Model
Fit-Gap analysis is the process by which data in source tables are mapped to the Oracle
Retail Data Model tables and columns and gaps are identified which would require
customization. You identify any required functionality that is not included in the
logical model and the default schema, and other modifications that are necessary to
meet your requirements.

The result of your fit-gap analysis is a customization report which is a brief
explanation of the adaptations and adjustments required to customize Oracle Retail
Data Model to fit your retail environment.

The fit-gap analysis team writes the customization report by taking the following
steps:

1. If you have performed previous evaluations, review the documentation from the
previous phases, and if necessary add team members with the required business
and technical expertise.

2. Review the data and map your logical entities and data structure with the Oracle
Retail Data Model logical model and schema:

■ Starting from business requirements, questions, and rules, identify any entities
and attributes that are not in the Oracle Retail Data Model.

■ Compare the Oracle Retail Data Model to your existing application model if
you have one.

■ Compare the Oracle Retail Data Model to the transactional data that you are
using as a data source to the Oracle Retail Data Model warehouse.

3. Determine the differences between your needs and Oracle Retail Data Model
schema. To help you with this task, produce a list of actions people may take with
the system (examples rather than models), and create use cases for appraising the
functionality of the Oracle Retail Data Model Warehouse. Answer the following
questions about the differences you find:

■ Which differences you can live with, and which must be reconciled?

■ What can you do about the differences you cannot live with?

4. Identify the changes you must make to the default design of Oracle Retail Data
Model to create the customized warehouse. Identify these changes in the following
order:

a. Physical model. Follow the guidelines outlined in Chapter 2, "Physical Model
Customization".

b. ETL mapping. Follow the guidelines outlined in Chapter 4, "ETL
Implementation and Customization" to identify and design the source-ETL
that you must write and any changes you must make to the intra-ETL
provided with Oracle Retail Data Model.

Tip: When identifying changes, ensure that the changes meet your
security and metadata requirements.

Performing Fit-Gap Analysis for Oracle Retail Data Model

Introduction to Oracle Retail Data Model Customization 1-11

5. Write the customization report, detailing what changes are required to make the
Oracle Retail Data Model match your business needs. This includes any additions
and changes to interfaces to existing systems.

6. Based on the customization report, update the Project Plan and perform the steps
outlined in "Steps for Implementing an Oracle Retail Data Model Warehouse" on
page 1-3.

Performing Fit-Gap Analysis for Oracle Retail Data Model

1-12 Oracle Retail Data Model Implementation and Operations Guide

2

Physical Model Customization 2-1

2Physical Model Customization

This chapter provides general information about customizing the physical model of
Oracle Retail Data Model and more detailed information about customizing the
foundation layer of the physical model. This chapter contains the following topics:

■ Characteristics of the Default Physical Model

■ Customizing the Oracle Retail Data Model Physical Model

■ Foundation Layer Customization

■ General Recommendations When Designing Physical Structures

Characteristics of the Default Physical Model
The default physical model of Oracle Retail Data Model defines:

■ Over 1,250 tables and 18,500 attributes

■ Over 1,800 industry measures and KPIs

■ 12 pre-built data mining models

■ 30 OLAP dimensions and 28 pre-built OLAP cubes

The default physical model of Oracle Retail Data Model shares characteristics of a
multischema "traditional" data warehouse, as described in "Layers in a "Traditional"
Data Warehouse" on page 2-1, but defines all data structures in a single schema as
described in "Layers in the Default Oracle Retail Data Model Warehouse" on page 2-2.

Layers in a "Traditional" Data Warehouse
Historically, three layers are defined for a data warehouse environment:

■ Staging layer. This layer is used when moving data from the transactional system
and other data sources into the data warehouse itself. It consists of temporary
loading structures and rejected data. Having a staging layer enables the speedy
extraction, transformation and loading (ETL) of data from your operational
systems into data warehouse without disturbing any of the business users. It is in
this layer the much of the complex data transformation and data quality
processing occurs. The most basic approach for the design of the staging layer is as
a schema identical to the one that exists in the source operational system.

See also: Chapter 3, "Access Layer Customization"

Characteristics of the Default Physical Model

2-2 Oracle Retail Data Model Implementation and Operations Guide

■ Foundation or integration layer. This layer is traditionally implemented as a
Third Normal Form (3NF) schema. A 3NF schema is a neutral schema design
independent of any application, and typically has a large number of tables. It
preserves a detailed record of each transaction without any data redundancy and
allows for rich encoding of attributes and all relationships between data elements.
Users typically require a solid understanding of the data to navigate the more
elaborate structure reliably. In this layer data begins to take shape and it is not
uncommon to have some end-user application access data from this layer
especially if they are time sensitive, as data becomes available here before it is
transformed into the Access and Performance layer.

■ Access layer. This layer is traditionally defined as a snowflake or star schema that
describes a "flattened" or dimensional view of the data.

Layers in the Default Oracle Retail Data Model Warehouse
Oracle Retail Data Model warehouse environment also consists of three layers, as
shown in Figure 2–1. Note, in the Oracle Retail Data Model the definitions of the
foundation and access layers are combined in a single schema.

Figure 2–1 Layers of an Oracle Retail Data Model Warehouse

The layers in the Oracle Retail Data Model warehouse are:

■ Staging layer. As in a "traditional" data warehouse environment, an Oracle Retail
Data Model warehouse environment can have a staging layer. See the Oracle Retail
Data Model Release Notes for more details on the staging layer.

■ Foundation and Access layers. The physical objects for these layers are defined in
a single schema, the ordm_sys schema:

Note: In some implementations this layer is not necessary, because
all data transformation processing is done "on the fly" as data is
extracted from the source system before it is inserted directly into the
foundation layer.

Customizing the Oracle Retail Data Model Physical Model

Physical Model Customization 2-3

■ Foundation layer. The foundation layer of the Oracle Retail Data Model is
defined by base (DWB_) and Reference (DWR_) tables that present the data in
3NF; this layer also includes the lookup and control tables defined in the
ordm_sys schema (that is, the tables that have the DWL_ and DWC_ prefixes).

■ Access layer. The Access layer of Oracle Retail Data Model is defined by
derived and aggregate tables (defined with DWD_ and DWA_ prefixes), cubes
(defined with a CB$ prefix), and views (that is, views defined with the _VIEW
suffix). These structures provide a summarized or "flattened" perspective of
the data in the foundation layer.

This layer also contains the results of the data mining models which are stored
in derived (DWD_) tables.

Customizing the Oracle Retail Data Model Physical Model
The starting point for the Oracle Retail Data Model physical data model is the 3NF
logical data model. The physical data model mirrors the logical model as much as
possible, although some changes in the structure of the tables or columns may be
necessary, and defines database objects (such as tables, cubes, and views).

To customize the default physical model of Oracle Retail Data Model take the
following steps:

1. Answer the questions outlined in "Questions to Answer Before You Customize the
Physical Model" on page 2-4.

2. Familiarize yourself with the characteristics of the logical and physical model of
Oracle Retail Data Model as outlined in"Characteristics of the Default Physical
Model" on page 2-1 and presented in detail in Oracle Retail Data Model Reference.

3. Modify the foundation level of your physical model of Oracle Retail Data Model,
as needed. See "Common Change Scenarios When Customizing the Foundation
Layer of Oracle Retail Data Model" on page 2-6 for a discussion of when
customization might be necessary.

When defining physical structures:

■ Keep the foundation layer in 3NF form.

■ Use the information presented in "General Recommendations When
Designing Physical Structures" on page 2-8 to guide you when designing the
physical objects.

■ Follow the conventions used when creating the default physical model of
Oracle Retail Data Model as outlined in "Conventions When Customizing the
Physical Model" on page 2-4.

4. Modify the access layer of your physical model of Oracle Retail Data Model as
discussed in Chapter 3, "Access Layer Customization".

See: Oracle Retail Data Model Reference for detailed information on
the ordm_sys schema.

Tip: Package the changes you make to the physical data model as a
patch to the ordm_sys schema.

Customizing the Oracle Retail Data Model Physical Model

2-4 Oracle Retail Data Model Implementation and Operations Guide

Questions to Answer Before You Customize the Physical Model
When designing the physical model, remember that the logical data model is not
one-to-one with the physical data model. Consider the load, query, and maintenance
requirements when you are designing the physical model customizations. For
example, answer the following questions before you design the physical data model:

■ Identify the scope of the changes. See "Common Change Scenarios When
Customizing the Foundation Layer of Oracle Retail Data Model" on page 2-6 for
an overview discussion of making physical data model changes when your
business needs do not result in a logical model that is the same as the Oracle Retail
Data Model logical model.

■ What is the result of the source data profile?

■ What is the data load frequency for each table?

■ How many large tables are there and which tables are these?

■ How will the tables and columns be accessed? What are the common joins?

■ What is your data backup strategy?

Conventions When Customizing the Physical Model
When developing the physical model for Oracle Retail Data Model, the following
conventions were used. Continue to follow these conventions as you customize the
physical model.

General Naming Conventions for Physical Objects
Follow these guidelines for naming physical objects that you define:

■ When naming the physical objects follow the naming guidelines for naming
objects within an Oracle Database schema. For example:

– Table and column names must start with a letter, can use only 30
alphanumeric characters or less, cannot contain spaces or some special
characters such as "!" and cannot use reserved words.

– Table names must be unique within a schema that is shared with views and
synonyms.

– Column names must be unique within a table.

■ Although it is common to use abbreviations in the physical modeling stage, as
much as possible, use names for the physical objects that correspond to the names
of the entities in the logical model. Use consistent abbreviations to avoid
programmer and user confusion.

■ When naming columns, use short names if possible. Short column names reduce
the time required for SQL command parsing.

■ The ordm_sys schema delivered with Oracle Retail Data Model uses the prefixes
and suffixes shown in the following table to identify object types.

Prefix or Suffix Used for Name of These Objects

CB$ Materialized view used to support/deliver required functionality for an
Oracle OLAP cube. This is an internal object built and maintained
automatically by the Oracle OLAP server in the database.

Note: Do not report or query against this object. Instead access the
corresponding _VIEW object.

Foundation Layer Customization

Physical Model Customization 2-5

Foundation Layer Customization
The first step in customizing the physical model of Oracle Retail Data Model is
customizing the foundation layer of the physical data model. Since, as mentioned in
"Layers in the Default Oracle Retail Data Model Warehouse" on page 2-2, the
foundation layer of the physical model mirrors the 3NF logical model of Oracle Retail
Data Model, you might choose to customize the foundation layer to reflect differences
between your logical model needs and the default logical model of Oracle Retail Data
Model. Additionally, you might need to customize the physical objects in the
foundation layer to improve performance (for example, you might choose to compress
some foundation layer tables).

When making changes to the foundation layer, keep the following points in mind:

■ When changing the foundation layer objects to reflect your logical model design,
make as few changes as possible. "Common Change Scenarios When Customizing
the Foundation Layer of Oracle Retail Data Model" on page 2-6 outlines the most
common customization changes you will make in this regard.

■ When defining new foundation layer objects or when redesigning existing
foundation layer objects for improved performance, follow the "General
Recommendations When Designing Physical Structures" on page 2-8 and
"Conventions When Customizing the Physical Model" on page 2-4.

■ Remember that changes to the foundation layer objects can also impact the access
layer objects.

DMV_ Materialized view created for performance reasons (that is, not an
aggregate table or an OLAP cube).

DWA_ Aggregate tables or relational materialized views (aggregate objects)

DWB_ Base transaction data (3NF) tables.

DWC_ Control tables.

DWD_ Derived tables -- including data mining result tables.

DWL_ Lookup tables.

DWV_ Relational view of time dimension

DWR_ Reference data tables.

_VIEW A relational view of an OLAP cube, dimension, or hierarchy.

Note: You should use a similar prefix and suffix, combined with an
indicator for your company or project name for any new tables, views,
and cubes that you define during customization. For example, if your
customization project chooses a standard prefix of 'AZ', then new base
tables would be created with the prefix 'AZB_', new reference tables
would use the prefix 'AZR_'.

See: Oracle Retail Data Model Reference for detailed information about
the objects in the default Oracle Retail Data Model.

Prefix or Suffix Used for Name of These Objects

Foundation Layer Customization

2-6 Oracle Retail Data Model Implementation and Operations Guide

Common Change Scenarios When Customizing the Foundation Layer of Oracle Retail
Data Model

There are several common change scenarios when customizing the foundation layer of
the physical data model:

■ Additions to Existing Structures

If you identify business areas or processes that are not supported in the default
foundation layer of the physical data model of Oracle Retail Data Model, add new
tables and columns.

Carefully study the default foundation layer of the physical data model of Oracle
Retail Data Model (and the underlying logical data model) to avoid building
redundant structures when making additions. If these additions add high value to
your business value, communicate the additions back to the Oracle Retail Data
Model Development Team for possible inclusion in future releases of Oracle Retail
Data Model.

■ Deletions of Existing Structures

If there are areas of the model that cannot be matched to any of the business
requirements of your legacy systems, it is safer to keep these structures and not
populate that part of the warehouse.

Deleting a table in the foundation layer of the physical data model can destroy
relationships needed in other parts of the model or by applications based on the it.
Some tables may not be needed during the initial implementation, but you may
want to use these structures at a later time. If this is a possibility, keeping the
structures now saves re-work later. If tables are deleted, perform a thorough
analysis to identify all relationships originating from that entity.

■ Changes to Existing Structures

In some situations some structures in the foundation layer of the physical data
model of Oracle Retail Data Model may not exactly match the corresponding
structures that you use. Before implementing changes, identify the impact that the
changes would have on the database design of Oracle Retail Data Model. Also
identify the impact on any applications based on the new design.

Note: Approach any attempt to change the Oracle Retail Data Model
with caution. The foundation layer of the physical model of Oracle
Retail Data Model has (at its core) a set of generic structures that allow
it to be flexible and extensible. Before making extensive additions,
deletions, or changes, ensure that you understand the full range of
capabilities of Oracle Retail Data Model and that you cannot handle
your requirements using the default objects in the foundation layer.

See also: "Example of Changing the Foundation Layer of the Oracle
Retail Data Model" on page 2-7

See also: "Example of Changing the Foundation Layer of the Oracle
Retail Data Model" on page 2-7

Foundation Layer Customization

Physical Model Customization 2-7

Example of Changing the Foundation Layer of the Oracle Retail Data Model
As an example, let's examine how Oracle Retail Data Model supports the various retail
services, what you might discover during fit-gap analysis, and how you might extend
Oracle Retail Data Model to fit the discovered gaps.

Entities supporting Retail services
The entities provided with the logical model of Oracle Retail Data Model that support
the retail services are:

■ Customer: An individual or organization that purchases, may purchase, or did
purchase goods and or services from a store.

■ Customer Order: The entity captures information about an order placed by a
customer for merchandise or services to be provided at some future date and time.

■ SKU Item: Stock Keeping Unit or unit identification, typically the UPC, used to
track store inventory and sales. Each SKU is associated with an item, variant,
product line, bundle, service, fee, or attachment. This is the lowest level of
merchandise for which inventory and sales records are retained within the retail
store.

■ Item Category: Category within a subclass in the product hierarchy, as it was at a
given point in time.

The differences discovered during fit-gap analysis
Assume that during the fit-gap analysis, you discover the following need that is not
supported by the logical model delivered with Oracle Retail Data Model:

Your company wants to add a new section in the retail domain. For example, if you
want to add a book section in your store to other existing departments.

Extending the physical model to support the differences
For example, to extend the physical data model, do the following:

1. Create a table named DWR_AUTHOR to hold the Author's information by executing
the following statements:

CREATE TABLE DWR_AUTHOR
(
AUTHOR _ID INTEGER NOT NULL,
AUTHOR _FIRST_NAME VARCHAR2 (50) NOT NULL,
AUTHOR _LAST_NAME VARCHAR2 (50)
);
ALTER TABLE DWR_AUTHOR ADD CONSTRAINT AUTHOR_PK PRIMARY KEY (AUTHOR _ID);

2. Add columns in the DWR_SKU_ITEM table using the following statement:

ALTER TABLE DWR_SKU_ITEM ADD COLUMN ISBN INTEGER NULL

3. Create another new table named DWR_AUTHOR_ITEM_ASGN:

CREATE TABLE DWR_AUTHOR_ITEM_ASGN
(
AUTHOR _ID INTEGER NOT NULL,
SKU_ITEM_KEY NUMBER (30) NOT NULL
);

General Recommendations When Designing Physical Structures

2-8 Oracle Retail Data Model Implementation and Operations Guide

General Recommendations When Designing Physical Structures
The ordm_sys schema delivered with Oracle Retail Data Model was designed and
defined following best practices for data access and performance. Continue to use
these practices when you add new physical objects. This section provides information
about how decisions about the following physical design aspects were made to the
default Oracle Retail Data Model:

■ Tablespaces in Oracle Retail Data Model

■ Data Compression in Oracle Retail Data Model

■ Surrogate Keys in the Physical Model

■ Integrity Constraints in Oracle Retail Data Model

■ Indexes and Partitioned Indexes in Oracle Retail Data Model

■ Partitioned Tables in Oracle Retail Data Model

■ Parallel Execution in Oracle Retail Data Model

Tablespaces in Oracle Retail Data Model
A tablespace consists of one or more data files, which are physical structures within
the operating system you are using.

Recommendations: Defining Tablespaces
If possible, define tablespaces so that they represent logical business units.

Use ultra large data files for a significant improvement in very large Oracle Retail Data
Model warehouse.

Changing the Tablespace and Partitions Used by Tables
You can change the tablespace and partitions used by Oracle Retail Data Model tables.
What you do depends on whether the Oracle Retail Data Model table has partitions:

■ For tables that do not have partitions (that is, lookup tables and reference tables),
you can change the existing tablespace for a table.

By default, Oracle Retail Data Model defines the partitioned tables as interval
partitioning, which means the partitions are created only when new data arrives.

Consequently, for Oracle Retail Data Model tables that have partitions (that is,
Base, Derived, and Aggregate tables), for the new interval partitions to be
generated in new tablespaces rather than current ones, issue the following
statements.

ALTER TABLE table_name MODIFY DEFAULT ATTRIBUTES
TABLESPACE new_tablespace_name;

When new data is inserted in the table specified by table_name, a new partition is
automatically created in the tablespace specified as new_tablespace_name.

■ For tables that have partitions (that is, base, derived, and aggregate tables), you
can specify that new interval partitions be generated into new tablespaces.

For Oracle Retail Data Model tables that do not have partitions, that is lookup
tables and reference tables, change the existing tablespace for a table with the
following statement.

ALTER TABLE table_name MOVE TABLESPACE new_tablespace_name;

General Recommendations When Designing Physical Structures

Physical Model Customization 2-9

Data Compression in Oracle Retail Data Model
A key decision that you must make is whether to compress your data. Using table
compression reduces disk and memory usage, often resulting in better scale-up
performance for read-only operations. Table compression can also speed up query
execution by minimizing the number of round trips required to retrieve data from the
disks. Compressing data however imposes a performance penalty on the load speed of
the data.

Recommendations: Data Compression
In general, choose to compress the data. The overall performance gain typically
outweighs the cost of compression.

If you decide to use compression, consider sorting your data before loading it to
achieve the best possible compression rate. The easiest way to sort incoming data is to
load it using an ORDER BY clause on either your CTAS or IAS statement. Specify an
ORDER BY a NOT NULL column (ideally non numeric) that has a large number of
distinct values (1,000 to 10,000).

Types of Data Compression Available
Oracle Database offers the following types of compression:

■ Basic or Standard Compression

■ OLTP Compression

■ Hybrid Columnar Compression (HCC)

Basic or Standard Compression With standard compression Oracle Database compresses
data by eliminating duplicate values in a database block. Standard compression only
works for direct path operations (CTAS or IAS). If the data is modified using any kind
of conventional DML operation (for example updates), the data within that database
block is uncompressed to make the modifications and is written back to disk
uncompressed.

By using a compression algorithm specifically designed for relational data, Oracle
Database can compress data effectively and in such a way that Oracle Database incurs
virtually no performance penalty for SQL queries accessing compressed tables.

Oracle Retail Data Model leverages this compress feature which reduces the amount of
data being stored, reduces memory usage, and increases query performance.

You can specify table compression using the COMPRESS clause of the CREATE TABLE
statement or you can enable compression for an existing table using ALTER TABLE
statement as shown:

alter table <tablename> move compress;

OLTP Compression OLTP compression is a component of the Advanced Compression
option. With OLTP compression, just like standard compression, Oracle Database
compresses data by eliminating duplicate values in a database block. But unlike
standard compression OLTP compression allows data to remain compressed during all
types of data manipulation operations, including conventional DML such as INSERT
and UPDATE.

See also: "Types of Data Compression Available" on page 2-9 and
"Compressing Materialized Views" on page 3-24.

General Recommendations When Designing Physical Structures

2-10 Oracle Retail Data Model Implementation and Operations Guide

Hybrid Columnar Compression (HCC) HCC is available with some storage formats and
achieves its compression using a logical construct called the compression unit which is
used to store a set of hybrid columnar-compressed rows. When data is loaded, a set of
rows is pivoted into a columnar representation and compressed. After the column data
for a set of rows has been compressed, it is fit into the compression unit. If
conventional DML is issued against a table with HCC, the necessary data is
uncompressed to do the modification and then written back to disk using a block-level
compression algorithm.

HCC provides different levels of compression, focusing on query performance or
compression ratio respectively. With HCC optimized for query, fewer compression
algorithms are applied to the data to achieve good compression with little to no
performance impact. However, compression for archive tries to optimize the
compression on disk, irrespective of its potential impact on the query performance.

Surrogate Keys in the Physical Model
The surrogate key method for primary key construction involves taking the natural
key components from the source systems and mapping them through a process of
assigning a unique key value to each unique combination of natural key components
(including source system identifier). The resulting primary key value is completely
non-intelligent and is typically a numeric data type for maximum performance and
storage efficiency.

Advantages of Surrogate keys include:
■ Ensure uniqueness: data distribution

■ Independent of source systems

■ Re-numbering

■ Overlapping ranges

■ Uses the numeric data type which is the most performant data type for primary
keys and joins

Disadvantages of Surrogate keys:
■ Requires allocation during ETL

See: Oracle Database Administrator's Guide for more information on
OLTP table compression features.

Oracle by Example: For more information on Oracle Advanced
Compression, see the "Using Table Compression to Save Storage
Costs" OBE tutorial.

To access the tutorial, open the Oracle Learning Library in your
browser by following the instructions in "Oracle Technology Network"
on page xii; and, then, search for the tutorial by name.

Tip: If your data set is frequently modified using conventional DML,
then the use of HCC is not recommended; instead, the use of OLTP
compression is recommended.

See also: The discussion on HCC in Oracle Database Concepts.

General Recommendations When Designing Physical Structures

Physical Model Customization 2-11

■ Complex and expensive re-processing and data quality correction

■ Not used in queries – performance impact

■ The operational business intelligence requires natural keys to join or trace back to
source operational systems

Integrity Constraints in Oracle Retail Data Model
Integrity constraints are used to enforce business rules associated with your database
and to prevent having invalid information in the tables.

The most common types of constraints include:

■ PRIMARY KEY constraints, this is usually defined on the surrogate key column to
ensure uniqueness of the record identifiers. In general, it is recommended that you
specify the ENFORCED ENABLED RELY mode.

■ UNIQUE constraints, to ensure that a given column (or set of columns) is unique.
For slowly changing dimensions, it is recommended that you add a unique
constraint on the Business Key and the Effective From Date columns to allow
tracking multiple versions (based on surrogate key) of the same Business Key
record.

■ NOT NULL constraints, to ensure that no null values are allowed. For query
rewrite scenarios, it is recommended that you have an inline explicit NOT NULL
constraint on the primary key column in addition to the primary key constraint.

■ FOREIGN KEY constraints, to ensure that relation between tables are being
honored by the data. Usually in data warehousing environments, the foreign key
constraint is present in RELY DISABLE NOVALIDATE mode.

The Oracle Database uses constraints when optimizing SQL queries. Although
constraints can be useful in many aspects of query optimization, constraints are
particularly important for query rewrite of materialized views. Under some specific
circumstances, constraints need space in the database. These constraints are in the
form of the underlying unique index.

Unlike data in many relational database environments, data in a data warehouse is
typically added or modified under controlled circumstances during the extraction,
transformation, and loading (ETL) process.

Indexes and Partitioned Indexes in Oracle Retail Data Model
Indexes are optional structures associated with tables or clusters. In addition to the
classical B-tree indexes, bitmap indexes are very common in data warehousing
environments

■ Bitmap indexes are optimized index structures for set-oriented operations.
Additionally, they are necessary for some optimized data access methods such as
star transformations. Bitmap indexes are typically only a fraction of the size of the
indexed data in the table.

■ B-tree indexes are most effective for high-cardinality data: that is, for data with
many possible values, such as customer_name or phone_number. However,
fully indexing a large table with a traditional B-tree index can be prohibitively
expensive in terms of disk space because the indexes can be several times larger
than the data in the table. B-tree indexes can be stored specifically in a compressed
manner to enable huge space savings, storing more keys in each index block,
which also leads to less I/O and better performance.

General Recommendations When Designing Physical Structures

2-12 Oracle Retail Data Model Implementation and Operations Guide

Recommendations: Indexes and Partitioned Indexes
Make the majority of the indexes in your customized Oracle Retail Data Model bitmap
indexes.

Use B-tree indexes only for unique columns or other columns with very high
cardinalities (that is, columns that are almost unique). Store the B-tree indexes in a
compressed manner.

Partition the indexes. Indexes are just like tables in that you can partition them,
although the partitioning strategy is not dependent upon the table structure.
Partitioning indexes makes it easier to manage the data warehouse during refresh and
improves query performance.

Typically, specify the index on a partitioned table as local. Bitmap indexes on
partitioned tables must always be local. B-tree indexes on partitioned tables can be
global or local. However, in a data warehouse environment, local indexes are more
common than global indexes. Use global indexes only when there is a specific
requirement which cannot be met by local indexes (for example, a unique index on a
nonpartitioning key, or a performance requirement).

Partitioned Tables in Oracle Retail Data Model
Partitioning allows a table, index or index-organized table to be subdivided into
smaller pieces. Each piece of the database object is called a partition. Each partition has
its own name, and may optionally have its own storage characteristics. From the
perspective of a database administrator, a partitioned object has multiple pieces that
can be managed either collectively or individually. This gives the administrator
considerable flexibility in managing partitioned objects. However, from the
perspective of the application, a partitioned table is identical to a nonpartitioned table.
No modifications are necessary when accessing a partitioned table using SQL DML
commands.

As discussed in the following topics, partitioning can provide tremendous benefits to a
wide variety of applications by improving manageability, availability, and
performance:

■ Partitioning the Oracle Retail Data Model for Manageability

■ Partitioning the Oracle Retail Data Model for Easier Data Access

■ Partitioning the Oracle Retail Data Model for Join Performance

See also: "Partitioned Tables in Oracle Retail Data Model" on
page 2-12, "Choosing Indexes for Materialized Views" on page 3-22,
"Choosing a Cube Partitioning Strategy for Oracle Retail Data Model"
on page 3-17, and "Partitioning and Materialized Views" on page 3-22.

Oracle by Example: To understand the various partitioning
techniques in Oracle Database, see the "Manipulating Partitions in
Oracle Database 11g" OBE tutorial.

To access the tutorial, open the Oracle Learning Library in your
browser by following the instructions in "Oracle Technology Network"
on page xii; and, then, search for the tutorial by name.

General Recommendations When Designing Physical Structures

Physical Model Customization 2-13

Partitioning the Oracle Retail Data Model for Manageability
Range partitioning helps improve the manageability and availability of large volumes
of data (Oracle Retail Data Model uses Interval partitioning which is an extension to
range partitioning). For more information, see Oracle Database VLDB and Partitioning
Guide.

Consider the case where two year's worth of sales data or 100 terabytes (TB) is stored
in a table. At the end of each day a new batch of data must be to loaded into the table
and the oldest days worth of data must be removed. If the Sales table is range
partitioned by day then the new data can be loaded using a partition exchange load.
This is a sub-second operation that has little or no impact on end user queries.

Partitioning the Oracle Retail Data Model for Easier Data Access
Range partitioning also helps ensure that only the necessary data to answer a query is
scanned (Oracle Retail Data Model uses Interval partitioning which is an extension to
range partitioning). Consider the case where business users predominately accesses
the sales data on a weekly basis (for example, total sales per week) then range
partitioning this table by day ensures that the data is accessed in the most efficient
manner, as only seven partitions must be scanned to answer the business users query
instead of the entire table. The ability to avoid scanning irrelevant partitions is known
as partition pruning. For more information, see Oracle Database VLDB and Partitioning
Guide.

Partitioning the Oracle Retail Data Model for Join Performance
Sub-partitioning by hash is used predominately for performance reasons. Oracle
Database uses a linear hashing algorithm to create sub-partitions.

A major performance benefit of hash partitioning is partition-wise joins. Partition-wise
joins reduce query response time by minimizing the amount of data exchanged among
parallel execution servers when joins execute in parallel. This significantly reduces
response time and improves both CPU and memory resource usage. In a clustered
data warehouse, this significantly reduces response times by limiting the data traffic
over the interconnect (IPC), which is the key to achieving good scalability for massive
join operations. Partition-wise joins can be full or partial, depending on the
partitioning scheme of the tables to be joined.

As illustrated in Figure 2–2, a full partition-wise join divides a join between two large
tables into multiple smaller joins. Each smaller join, performs a joins on a pair of
partitions, one for each of the tables being joined. For the optimizer to choose the full
partition-wise join method, both tables must be equi-partitioned on their join keys.
That is, they have to be partitioned on the same column with the same partitioning
method. Parallel execution of a full partition-wise join is similar to its serial execution,
except that instead of joining one partition pair at a time, multiple partition pairs are
joined in parallel by multiple parallel query servers. The number of partitions joined in
parallel is determined by the Degree of Parallelism (DOP).

See also: "Indexes and Partitioned Indexes in Oracle Retail Data
Model" on page 2-11, "Choosing a Cube Partitioning Strategy for
Oracle Retail Data Model" on page 3-17, and "Partitioning and
Materialized Views" on page 3-22.

General Recommendations When Designing Physical Structures

2-14 Oracle Retail Data Model Implementation and Operations Guide

Figure 2–2 Partitioning for Join Performance

Recommendations: Number of Hash Partitions
To ensure that the data gets evenly distributed among the hash partitions it is highly
recommended that the number of hash partitions is a power of 2 (for example, 2, 4, 8,
and so on). A good rule of thumb to follow when deciding the number of hash
partitions a table should have is 2 X # of CPUs rounded to up to the nearest power
of 2.

If your system has 12 CPUs, then 32 would be a good number of hash partitions. On a
clustered system the same rules apply. If you have 3 nodes each with 4 CPUs, then 32
would still be a good number of hash partitions. However, ensure that each hash
partition is at least 16MB. Many small partitions do not have efficient scan rates with
parallel query. Consequently, if using the number of CPUs makes the size of the hash
partitions too small, use the number of Oracle RAC nodes in the environment
(rounded to the nearest power of 2) instead.

Parallel Execution in Oracle Retail Data Model
Parallel Execution enables a database task to be parallelized or divided into smaller
units of work, thus allowing multiple processes to work concurrently. By using
parallelism, a terabyte of data can be scanned and processed in minutes or less, not
hours or days.

Figure 2–3 illustrates the parallel execution of a full partition-wise join between two
tables, Sales and Customers. Both tables have the same degree of parallelism and the
same number of partitions. They are range partitioned on a date field and sub
partitioned by hash on the cust_id field. As illustrated in the picture, each partition
pair is read from the database and joined directly.

General Recommendations When Designing Physical Structures

Physical Model Customization 2-15

There is no data redistribution necessary, thus minimizing IPC communication,
especially across nodes. Figure 2–3 shows the execution plan you would see for this
join.

Figure 2–3 Parallel Execution of a Full Partition-Wise Join Between Two Tables

To ensure that you get optimal performance when executing a partition-wise join in
parallel, use the degree of parallelism as a multiple of the number of partitions. The
number of partitions should be multiple of the number of cores. To get best
performance use degree of parallelism that is the same as the number of partitions to
be processed in a query (this should be equal to number of CPU cores).

What happens if only one table that you are joining is partitioned? In this case the
optimizer could pick a partial partition-wise join. Unlike full partition-wise joins,
partial partition-wise joins can be applied if only one table is partitioned on the join
key. Hence, partial partition-wise joins are more common than full partition-wise joins.
To execute a partial partition-wise join, Oracle Database dynamically repartitions the
other table based on the partitioning strategy of the partitioned table.

After the other table is repartitioned, the execution is similar to a full partition-wise
join. The redistribution operation involves exchanging rows between parallel
execution servers. This operation leads to interconnect traffic in Oracle RAC
environments, since data must be repartitioned across node boundaries.

Figure 2–4 illustrates a partial partition-wise join. It uses the same example as in
Figure 2–3, except that the customer table is not partitioned. Before the join operation
is executed, the rows from the customers table are dynamically redistributed on the
join key.

General Recommendations When Designing Physical Structures

2-16 Oracle Retail Data Model Implementation and Operations Guide

Figure 2–4 Partial Partition-Wise Join

Enabling Parallel Execution for a Session
Parallel query is the most commonly used parallel execution feature in Oracle
Database. Parallel execution can significantly reduce the elapsed time for large queries.
To enable parallelization for an entire session, execute the following statement.

alter session enable parallel query;

Enabling Parallel Execution of DML Operations
Data Manipulation Language (DML) operations such as INSERT, UPDATE, and
DELETE can be parallelized by Oracle Database. Parallel execution can speed up large
DML operations and is particularly advantageous in data warehousing environments.
To enable parallelization of DML statements, execute the following statement.

alter session enable parallel dml;

When you issue a DML statement such as an INSERT, UPDATE, or DELETE, Oracle
Database applies a set of rules to determine whether that statement can be
parallelized. The rules vary depending on whether the statement is a DML INSERT
statement, or a DML UPDATE or DELETE statement.

■ The following rules apply when determining how to parallelize DML UPDATE and
DELETE statements:

■ Oracle Database can parallelize UPDATE and DELETE statements on
partitioned tables, but only when multiple partitions are involved.

■ You cannot parallelize UPDATE or DELETE operations on a nonpartitioned
table or when such operations affect only a single partition.

■ The following rules apply when determining how to parallelize DML INSERT
statements:

■ Standard INSERT statements using a VALUES clause cannot be parallelized.

■ Oracle Database can parallelize only INSERT . . . SELECT . . . FROM
statements.

General Recommendations When Designing Physical Structures

Physical Model Customization 2-17

Enabling Parallel Execution at the Table Level
The setting of parallelism for a table influences the optimizer. Consequently, when
using parallel query, also enable parallelism at the table level by issuing the following
statement.

alter table <table_name> parallel 32;

General Recommendations When Designing Physical Structures

2-18 Oracle Retail Data Model Implementation and Operations Guide

3

Access Layer Customization 3-1

3Access Layer Customization

This chapter provides information about customizing the access layer of Oracle Retail
Data Model. It includes the following topics:

■ Introduction to Customizing the Access Layer of Oracle Retail Data Model

■ Derived Tables in the Oracle Retail Data Model

■ Dimensional Components in the Oracle Retail Data Model

■ Materialized Views in the Oracle Retail Data Model

Introduction to Customizing the Access Layer of Oracle Retail Data Model
The access layer of Oracle Retail Data Model provides the calculated and summarized
("flattened") perspectives of the data needed by business intelligence tools. Access
layer objects are populated using the data from the foundation layer 3NF objects.

The access layer objects in the ordm_sys schema include: derived tables, aggregate
objects, OLAP cubes, and materialized views. This layer also contains data mining
models. The results of the these models are stored in derived tables.

When designing and customizing access layer objects:

■ Follow the general guidelines for customizing physical objects given in "General
Recommendations When Designing Physical Structures" on page 2-8.

■ Design the access layer objects to support the business intelligence reports and
queries that your site makes. See Chapter 5, "Report and Query Customization."

The following topics provide specialized information about designing and
customizing access layer objects:

■ Derived Tables in the Oracle Retail Data Model

■ Dimensional Components in the Oracle Retail Data Model

■ Materialized Views in the Oracle Retail Data Model

Derived Tables in the Oracle Retail Data Model
Derived tables contain data which is generated from foundation tables using
transformation or aggregation operations (or sometimes, both). There are some
derived tables such as DWD_RTL_SL_RETRN_ITEM_DAY which are populated after
performing minimal aggregations as well as transformations on Foundation layer

See also: Chapter 2, "Physical Model Customization"

Derived Tables in the Oracle Retail Data Model

3-2 Oracle Retail Data Model Implementation and Operations Guide

data. Derived tables have a DWD_ prefix and typically contain data at a specific
granularity of time (typically, at DAY level of the time dimension).

There are two main types of derived tables in the default Oracle Retail Data Model and
the way you customize these tables varies by type:

■ Tables that hold the results of a calculation such as the DWD_EMP_LBR table that
contains employee labor details at the day level. For information on customizing
these tables, see "Creating New Derived Tables for Calculated Data" on page 3-2.

■ Result tables for the data mining models (for example, DWD_CUST_MNNG). For
information on customizing data mining models, see "Customizing Oracle Retail
Data Model Data Mining Models" on page 3-2.

Creating New Derived Tables for Calculated Data
If, during fit-gap analysis, you identified a need for calculated data that is not
provided by the default derived tables, you can meet this need by defining new tables.
When designing these tables, name the tables following the convention of using the
DWD_ prefix for derived tables.

Customizing Oracle Retail Data Model Data Mining Models
Some derived (DWD_) tables in the default ordm_sys schema are the results of data
mining models defined in the default Oracle Retail Data Model. Those models are also
defined in the default ordm_sys schema.

All Oracle Retail Data Model mining models use materialized views as source input.
Those materialized views are defined in ordm_mining_etl.sql file in $ORACLE_
HOME/ordm/pdm/mining/src. Each mining model uses a different materialized
view as its source.

When creating a customized Oracle Retail Data Model warehouse, data mining models
may be customized as follows:

■ Create a model as discussed in "Creating a New Data Mining Model for Oracle
Retail Data Model" on page 3-2.

■ Modify an existing model as discussed in "Modifying Oracle Retail Data Model
Data Mining Models" on page 3-3.

Creating a New Data Mining Model for Oracle Retail Data Model
To write a new data mining model:

1. Ensure that the ordm_sys schema includes a definition for a materialized view
that you can use as input to the model. Define a new materialized view, if
necessary.

2. Create the model as you would any data mining model. Follow the instructions
given in Oracle Data Mining Concepts. Add the model to the ordm_sys schema.

See: The Derived Tables topic in Oracle Retail Data Model Reference
for a list of all of the derived tables in the default Oracle Retail Data
Model. For a list of only those derived tables that are results tables for
the data mining models, see the chapter on Data Mining Models in
Oracle Retail Data Model Reference.

See also: "Tutorial: Customizing the Customer Life Time Value
Prediction Data Mining Model" on page 3-3.

Derived Tables in the Oracle Retail Data Model

Access Layer Customization 3-3

3. Add any physical tables needed by the model into the ordm_sys schema. Follow
the naming conventions outlined in "Conventions When Customizing the Physical
Model" on page 2-4 and use a DWD_ prefix for results tables.

4. In the ordm_sys schema, grant SELECT privileges to the results tables created in
Step 3.

5. Modify the intra-ETL to support the use of the data mining model.

Modifying Oracle Retail Data Model Data Mining Models
To customize Oracle Retail Data Model mining models, take the following steps:

1. Change the definition for source materialized views used as input to the mining
model.

2. Train the model again by calling Oracle Retail Data Model mining package.

3. Ensure that the model reflects the new definition (for example, that a new column
has been added).

Example 3–1 Adding a New Column to a Mining Model in Oracle Retail Data Model

To add a new column to create_cust_ltv_glmr, take the following steps:

1. Add the new column to the following materialized view that is used as input to
create_cust_ltv_glmr.

DMV_CUST_ACCT_SRC

2. Train the model by issuing the following statement:

exec pkg_ordm_mining.create_cust_ltv_glmr;

3. Execute the following statement to query the result table and ensure the new
column name is included in the query result:

SELECT DISTINCT attribute_name FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_GLM('CUST_LTV_GLMR'));

Tutorial: Customizing the Customer Life Time Value Prediction Data Mining Model
After you have populated Oracle Retail Data Model foundation layer and executed the
intra-ETL to populate derived tables, you can leverage the prebuilt Oracle Retail Data
Model data mining models for more advanced analysis and predictions.

This tutorial shows how to predict the Life Time Value of customers who are registered
members at a retail store, for the next three years based on populated Oracle Retail
Data Model warehouse. Using prebuilt Oracle Retail Data Model data mining models
you can easily and very quickly see the prediction results of your customers, without
having to go through all of the data preparation, training, testing, and applying
process that you must perform in a traditional from-scratch mining project. See Oracle
Data Mining Concepts for more information about the Oracle Database mining training
and scoring (applying) process.

After initially generating a data mining model, as time goes by, the customer
information, behavior, and purchase history change. Consequently, you must refresh
the previously trained data mining models based on the latest customer and usage
data. You can follow the process in this tutorial to refresh the data mining models to
acquire predictions based the on latest customer information.

See also: "Refreshing Oracle Retail Data Model Data Mining
Models" on page 4-19, and "Troubleshooting Data Mining Model
Creation" on page 4-22.

Derived Tables in the Oracle Retail Data Model

3-4 Oracle Retail Data Model Implementation and Operations Guide

This tutorial shows you how to investigate the Customer Life Time Value Prediction
model through Oracle Retail Data Model mining APIs. To use different parameters in
the training process, or customize the model in more advanced fashion, you can either
modify mining settings tables, the tables with DM_ as prefix, or use the Oracle Data
Miner GUI tool (an extension to Oracle SQL Developer).

This tutorial consists of the following:

■ Tutorial Prerequisites

■ Preparing Your Environment

■ Generating the Model

■ Checking the Result

Tutorial Prerequisites Before starting this tutorial:

1. Review the Oracle by Example (OBE) tutorial "Using Oracle Data Miner 11g
Release 2." To access this tutorial, open the Oracle Learning Library in your
browser by following the instructions in "Oracle Technology Network" on page xii;
and, then, search for the tutorial by name.

2. Install Oracle Retail Data Model.

3. Populate the base, reference, and lookup tables.

4. Execute the intra-ETL.

Ensure that the following tables contain valid data:

DWB_RTL_TRX

DWR_CUST

DWR_BSNS_MO

DWR_CUST_ACCT

DWR_CUST_RSTRCT_INFO

Preparing Your Environment This tutorial requires a valid, populated Oracle Retail Data
Model warehouse.

To prepare the environment, do the following:

1. In Oracle SQL Developer, connect to the ordm_sys schema, as shown in
Figure 3–1.

Note: If you have not populated Oracle Retail Data Model with data
from operational systems using sample data will not result in
meaningful mining model outcomes. To understand the data mining
models, you can use the sample data provided with Oracle Retail Data
Model by taking the following steps:

■ Ensure that during the install, you generated the calendar data
covering range of 2005-2012. For example, the parameters of
starting from 20050101 for 8 years satisfy this condition.

■ Download the sample data (ordm_mining_sample.zip) and
import the data into your new ordm_sys schema.

Derived Tables in the Oracle Retail Data Model

Access Layer Customization 3-5

Figure 3–1 Oracle SQL Developer with ORDM_SYS Schema

2. After you connect to the ordm_sys schema, you can see all of the tables. You can
narrow down the list by right clicking "Tables" and then applying filters, as shown
in Figure 3–2.

Figure 3–2 Applying Filters

Derived Tables in the Oracle Retail Data Model

3-6 Oracle Retail Data Model Implementation and Operations Guide

3. (Optional) As mentioned in "Tutorial Prerequisites", if you have not populated the
tables with your own data, you can use the sample data. After you download the
sample data, take the following steps to import the data:

a. Grant dba to ordm_sys using the following statement:

grant dba to ordm_sys

b. Disable all foreign keys on those tables required by the tutorial. First, issue the
following statement that generates SQL statements:

SELECT 'ALTER TABLE ' || table_name || ' DISABLE CONSTRAINT ' ||
CONSTRAINT_NAME || ' CASCADE;' FROM all_constraints
WHERE status='ENABLED' AND owner='ORDM_SYS'
AND constraint_type=
'R' and table_name IN
('DWB_RTL_TRX','DWR_CUST','DWR_BSNS_MO',
'DWR_CUST_ACCT','DWR_CUST_RSTRCT_INFO') ;

Then, to actually disable the foreign keys for the following tables, execute the
SQL statements generated by the previous SELECT statement:

DWB_RTL_TRX
DWR_CUST
DWR_BSNS_MO
DWR_CUST_ACCT
DWR_CUST_RSTRCT_INFO

c. Ensure that the sample dump, ordm_mining_sample.dmp, is in default data
dump directory, DATA_PUMP_DIR. Then, import the sample mining dump
into ordm_sys schema by issuing the following statement (replace password
with your password for ordm_sys):

impdp ordm_sys/password directory=DATA_DUMP_DIR dumpfile=ordm_mining_
sample.dmp content=DATA_ONLY table_exist_action=truncate TABLES=ordm_
sys.DWB_RTL_TRX, ordm_sys.DWR_CUST, ordm_sys.DWR_BSNS_MO, ordm_sys.DWR_
CUST_ACCT , ordm_sys.DWR_CUST_RSTRCT_INFO

4. Review the tables to ensure that they contain valid data (using either your
customer data or the sample mining data), as shown in Figure 3–3.

Derived Tables in the Oracle Retail Data Model

Access Layer Customization 3-7

Figure 3–3 Review Tables to Ensure Valid Data

5. Check the mining result table DWD_CUST_MNNG is empty before executing the
model procedure in Oracle Retail Data Model Mining APIs.

Generating the Model This tutorial uses two procedures from Oracle Retail Data Model
APIs:

■ pkg_ordm_mining.refresh_mining_source: refreshes all mining source
materialized views.

■ pkg_ordm_mining.create_cust_ltv_glmr: generates the Customer Life
Time Value Prediction Model.

Take the following steps to use these procedures:

1. Refresh the Oracle Retail Data Model mining source materialized views by
executing the following SQL statements:

SELECT count(*) FROM dmv_cust_acct_src;
EXEC pkg_ordm_mining.refresh_mining_source;
SELECT count(*)FROM dmv_cust_acct_src;

These statements do the following:

■ Display the number of records in DMV_CUST_ACCT_SRC materialized view
before materialized view refresh.

■ Refresh the mining source materialized views.

■ Display the number of records in DMV_CUST_ACCT_SRC materialized view
after materialized view refresh.

2. Generate the Customer Life Time Value Prediction Model by executing the
following statements:

SELECT count(*) FROM dwd_cust_mnng;

Derived Tables in the Oracle Retail Data Model

3-8 Oracle Retail Data Model Implementation and Operations Guide

EXEC pkg_ordm_mining. create_cust_ltv_glmr;
SELECT count(*) FROM dwd_cust_mnng;

These statements do the following:

■ Show the records count in dwd_cust_mnng table before data mining model
build.

■ Train the data mining model.

■ Show the records count in the dwd_cust_mnng table after data mining model
build.

Checking the Result After refreshing the mining source materialized views and building
the data mining model, check the mining prediction results in the dwd_cust_mnng
table as shown in the following steps:

1. Issue the following query:

SELECT cust_key,ltv_val,ltv_band_cd FROM dwd_cust_mnng;

Figure 3–4 Checking the Result

2. For each customer identified by cust_key, the ltv_val column gives the prediction
of customer life time value, a continuous value. The ltv_band_cd column is
populated by binning the prediction value, ltv_val.

Dimensional Components in the Oracle Retail Data Model

Access Layer Customization 3-9

Dimensional Components in the Oracle Retail Data Model
There is often much discussion regarding the 'best' modeling approach to take for any
given data warehouse with each style, classic 3NF and dimensional having their own
strengths and weaknesses. It is likely that data warehouses must do more to embrace
the benefits of each model type rather than rely on just one - this is the approach that
was adopted in designing the Oracle Retail Data Model. The foundation layer of the
Oracle Retail Data Model is a 3NF model. The default Oracle Retail Data Model also
provides a dimensional model of the data. This dimensional model of the data is a
perspective that summarizes and aggregates data, rather than preserving detailed
transaction information.

Familiarize yourself with dimensional modeling by reading the following topics before
you begin to customize the dimensional model of the default Oracle Retail Data
Model:

■ Characteristics of a Dimensional Model

■ Characteristics of Relational Star and Snowflake Tables

■ Characteristics of the OLAP Dimensional Model

■ Characteristics of the OLAP Cubes in Oracle Retail Data Model

■ Defining New Oracle OLAP Cubes for Oracle Retail Data Model

■ Changing an Oracle OLAP Cube in Oracle Retail Data Model

■ Creating a Forecast Cube for Oracle Retail Data Model

■ Choosing a Cube Partitioning Strategy for Oracle Retail Data Model

■ Choosing a Cube Data Maintenance Method for Oracle Retail Data Model

Characteristics of a Dimensional Model
The simplicity of a dimensional model is inherent because it defines objects that
represent real-world business entities. Analysts know which business measures they
are interested in examining, which dimensions and attributes make the data
meaningful, and how the dimensions of their business are organized into levels and
hierarchies.

In the simplest terms, a dimensional model identifies the following objects:

■ Measures. Measures store quantifiable business data (such as sales, expenses, and
inventory). Measures are sometimes called "facts". Measures are organized by one
or more dimensions and may be stored or calculated at query time:

■ Stored Measures. Stored measures are loaded and stored at the leaf level.
Commonly, there is also a percentage of summary data that is stored.
Summary data that is not stored is dynamically aggregated when queried.

■ Calculated Measures. Calculated measures are measures whose values are
calculated dynamically at query time. Only the calculation rules are stored in
the database. Common calculations include measures such as ratios,
differences, moving totals, and averages. Calculations do not require disk
storage space, and they do not extend the processing time required for data
maintenance.

■ Dimensions. A dimension is a structure that categorizes data to enable users to
answer business questions. Commonly used dimensions are Customers, Products,
and Time. A dimension's structure is organized hierarchically based on
parent-child relationships. These relationships enable:

Dimensional Components in the Oracle Retail Data Model

3-10 Oracle Retail Data Model Implementation and Operations Guide

■ Navigation between levels.

Hierarchies on dimensions enable drilling down to lower levels or navigation
(rolling up) to higher levels. Drilling down on the Time dimension member
2011 typically navigates you to the quarters Q1 2011 through Q4 2011. In a
calendar year hierarchy, drilling down on Q1 2011 would navigate you to the
months, January 2011 through March 2011. These kinds of relationships make
it easy for users to navigate large volumes of multidimensional data.

■ Aggregation from child values to parent values.

The parent represents the aggregation of its children. Data values at lower
levels aggregate into data values at higher levels. Dimensions are structured
hierarchically so that data at different levels of aggregation are manipulated
efficiently for analysis and display.

■ Allocation from parent values to child values.

The reverse of aggregation is allocation and is heavily used by planning
budgeting, and similar applications. Here, the role of the hierarchy is to
identify the children and descendants of particular dimension members of
"top-down" allocation of budgets (among other uses).

■ Grouping of members for calculations.

Share and index calculations take advantage of hierarchical relationships (for
example, the percentage of total profit contributed by each product, or the
percentage share of product revenue for a certain category, or costs as a
percentage of the geographical region for a retail location).

A dimension object helps to organize and group dimensional information into
hierarchies. This represents natural 1:n relationships between columns or column
groups (the levels of a hierarchy) that cannot be represented with constraint
conditions. Going up a level in the hierarchy is called rolling up the data and going
down a level in the hierarchy is called drilling down the data.

There are two ways that you can implement a dimensional model:

■ Relational tables in a star schema configuration. This traditional method of
implementing a dimensional model is discussed in "Characteristics of Relational
Star and Snowflake Tables" on page 3-10.

■ Oracle OLAP Cubes. The physical model provided with Oracle Retail Data Model
provides a dimensional perspective of the data using Oracle OLAP cubes. This
dimensional model is discussed in "Characteristics of the OLAP Dimensional
Model" on page 3-12.

Characteristics of Relational Star and Snowflake Tables
In the case of relational tables, the dimensional model has historically been
implemented as a star or snowflake schema. Dimension tables (which contain
information about hierarchies, levels, and attributes) join to one or more fact tables.
Fact tables are the large tables that store quantifiable business measurements (such as
sales, expenses, and inventory) and typically have foreign keys to the dimension
tables. Dimension tables, also known as lookup or reference tables. contain the
relatively static or descriptive data in the data warehouse.

A star schema borders on a physical model, as drill paths, hierarchy and query profile
are embedded in the data model itself rather than the data. This in part at least, is what
makes navigation of the model so straightforward for end users. Star schemas usually
have a large fact table surrounded by smaller dimension tables. Dimension tables do

Dimensional Components in the Oracle Retail Data Model

Access Layer Customization 3-11

not change very much. Most of the information that the users need are in the fact
tables. Therefore, star schemas have fewer table joins than do 3NF models.

A star schema is so called because the diagram resembles a star, with points radiating
from a center. The center of the star consists of one or more fact tables and the points of
the star are the dimension tables, as shown in Figure 3–5.

Figure 3–5 Star Schema Diagram

Snowflake schemas are slight variants of a simple star schema where the dimension
tables are further normalized and broken down into multiple tables. The snowflake
aspect only affects the dimensions and not the fact table and is therefore considered
conceptually equivalent to star schemas. Snowflake dimensions are useful and indeed
necessary when there are fact tables of differing granularity. A month-level derived or
aggregate table (or materialized view) must be associated with a month level
snowflake dimension table rather than the default (lower) Day level star dimension
table.

Declaring Relational Dimension Tables
When a relational table acts as a dimension to a fact table, it is recommended that you
declare that table as a dimension (even though it is not necessary). Defined dimensions
can yield significant performance benefits, and support the use of more complex types
of rewrite.

To define and declare the structure of the dimension use the CREATE DIMENSION
command. Use the LEVEL clause to identify the names of the dimension levels.

Validating Relational Dimension Tables
To improve the data quality of the dimension data in the data warehouse, it is
recommended that you validate the declarative information about the relationships
between the dimension members after any modification to the dimension data.

To perform this validation, use the VALIDATE_DIMENSION procedure of the DBMS_
DIMENSION package. When the VALIDATE_DIMENSION procedure encounters any
errors, the procedure places the errors into the DIMENSION_EXCEPTIONS table. To
find the exceptions identified by the VALIDATE_DIMENSION procedure, query the
DIMENSION_EXCEPTIONS table.

See also: "Declaring Relational Dimension Tables" on page 3-11 and
"Validating Relational Dimension Tables" on page 3-11.

Dimensional Components in the Oracle Retail Data Model

3-12 Oracle Retail Data Model Implementation and Operations Guide

You can schedule a call to the VALIDATE_DIMENSION procedure as a post-process
step to the regular Incremental Dimension load script. This can be done before the call
to refresh the derived or aggregate tables of the data model through materialized view
refresh, intra-ETL package calls.

Characteristics of the OLAP Dimensional Model
Oracle OLAP Cubes logically represent data similar to relational star tables, although
the data is actually stored in multidimensional arrays. Like dimension tables, cube
dimensions organize members into hierarchies, levels, and attributes. The cube stores
the measure (fact) data. The dimensions form the edges of the cube.

Oracle OLAP is an OLAP server embedded in the Oracle Database. Oracle OLAP
provides native multidimensional storage and speed-of-thought response times when
analyzing data across multiple dimensions. The database provides rich support for
analytics such as time series calculations, forecasting, advanced aggregation with
additive and nonadditive operators, and allocation operations.

By integrating multidimensional objects and analytics into the database, Oracle
Database provides the best of both worlds: the power of multidimensional analysis
along with the reliability, availability, security, and scalability of the Oracle Database.

Oracle OLAP is fully integrated into Oracle Database. At a technical level, this means:

■ The OLAP engine runs within the kernel of Oracle Database.

■ Dimensional objects are stored in Oracle Database in their native
multidimensional format.

■ Cubes and other dimensional objects are first class data objects represented in the
Oracle data dictionary.

■ Data security is administered in the standard way, by granting and revoking
privileges to Oracle Database users and roles.

■ OLAP cubes, dimensions, and hierarchies are exposed to applications as relational
views. Consequently, applications can query OLAP objects using SQL as described
in "Oracle OLAP Cube Views" on page 3-13 and Chapter 5, "Report and Query
Customization."

■ Oracle OLAP cubes can be enhanced so that they are materialized views as
described in "Cube Materialized Views" on page 3-14.

Benefits of Using Oracle OLAP
Using Oracle OLAP provides significant benefits; Oracle OLAP offers the power of
simplicity with One database, standard administration and security, and standard
interfaces and development tools.

The Oracle OLAP dimensional data model is highly structured. Structure implies rules
that govern the relationships among the data and control how the data can be queried.
Cubes are the physical implementation of the dimensional model, and thus are highly
optimized for dimensional queries. The OLAP engine leverages this innate
dimensionality in performing highly efficient cross-cube joins for inter-row
calculations, outer joins for time series analysis, and indexing. Dimensions are
pre-joined to the measures. The technology that underlies cubes is based on an
indexed multidimensional array model, which provides direct cell access.

See also: Oracle OLAP User's Guide and"Characteristics of the OLAP
Cubes in Oracle Retail Data Model" on page 3-15.

Dimensional Components in the Oracle Retail Data Model

Access Layer Customization 3-13

The OLAP engine manipulates dimensional objects in the same way that the SQL
engine manipulates relational objects. However, because the OLAP engine is
optimized to calculate analytic functions, and dimensional objects are optimized for
analysis, analytic and row functions can be calculated much faster in OLAP than in
SQL.

The dimensional model enables Oracle OLAP to support high-end business
intelligence tools and applications such as OracleBI Discoverer Plus OLAP, OracleBI
Spreadsheet Add-In, Oracle Business Intelligence Suite Enterprise Edition,
BusinessObjects Enterprise, and Cognos ReportNet.

Oracle OLAP Dimensional Objects
Oracle OLAP dimensional objects include cubes, measures, dimensions, hierarchies,
levels and attributes. The OLAP dimensional objects are described in detail in Oracle
OLAP User's Guide. Figure 3–6 shows the general relationships among the objects.

Figure 3–6 Diagram of the OLAP Dimensional Model

Oracle OLAP Cube Views
When you define an OLAP cube, Oracle OLAP automatically generates a set of
relational views on the cube and its dimensions and hierarchies

■ Cube view. Each cube has a cube view that presents the data for all the measures
and calculated measures in the cube. You can use a cube view like a fact table in a
star or snowflake schema. However, the cube view contains all the summary data
in addition to the detail level data. The default name of a cube view is cube_
VIEW.

■ Dimension and hierarchy views. Each dimension has one dimension view plus a
hierarchy view for each hierarchy associated with the dimension. The default
name for a dimension view is dimension_VIEW. For a hierarchy view, the
default name is dimension_hierarchy_VIEW.

These views are related in the same way as fact and dimension tables in a star schema.
Cube views serve the same function as fact tables, and hierarchy views and dimension
views serve the same function as dimension tables. Typical queries join a cube view
with either a hierarchy view or a dimension view.

SQL applications query these views to display the information-rich contents of these
objects to analysts and decision makers. You can also create custom views that follow
the structure expected by your applications, using the system-generated views like
base tables.

Dimensional Components in the Oracle Retail Data Model

3-14 Oracle Retail Data Model Implementation and Operations Guide

Cube Materialized Views
Oracle OLAP cubes can be enhanced so that they also contain materialized views as
part of the underlying implementation. A cube that has been enhanced in this way is
said to contain a cube materialized view and the cube materialized view is identified
with a CB$ prefix (for example: the SLSQR cube contains a cube materialized view
CB$SLSQR). Cube materialized views can be incrementally refreshed through the
Oracle Database materialized view subsystem, and if the option "Enable Query
Rewrite" has been enabled for the cube, they can also serve as targets for transparent
rewrite of queries against the source tables.

The OLAP dimensions associated with a cube materialized view are also defined with
materialized view capabilities.

Necessary Cube Characteristics for Cube Materialized Views
A cube must conform to the following requirements before it can be designated as a
cube materialized view:

■ All dimensions of the cube have at least one level and one level-based hierarchy.
Ragged and skip-level hierarchies are not supported. The dimensions must be
mapped.

■ All dimensions of the cube use the same aggregation operator, which is either SUM,
MIN, or MAX.

■ The cube has one or more dimensions and one or more measures.

■ The cube is fully defined and mapped. For example, if the cube has five measures,
then all five are mapped to the source tables.

■ The data type of the cube is NUMBER, VARCHAR2, NVARCHAR2, or DATE.

■ The source detail tables support dimension and rely constraints. If they have not
been defined, then use the Relational Schema Advisor to generate a script that
defines them on the detail tables.

■ The cube is compressed.

■ The cube can be enriched with calculated measures, but it cannot support more
advanced analytics in a cube script.

Adding Materialized View Capabilities
To add materialized view capabilities to an OLAP cube, take the following steps:

1. In the Analytic Workspace Manager, connect to the ordm_sys schema.

2. From the cube list, select the cube which to enable.

3. In the right pane, select the Materialized Views tab.

4. Select the option Enable Materialized View Refresh of the Cube, and select the
Refresh Method: Fast and Constraints: Trusted and also select the option Include
a count of measure values in the materialized view, then click Apply. Leave the
option Enable for Query Rewrite unchecked by default.

5. For certain cubes, for example the SLSQR cube, enable the option Enable for
Query Rewrite. This is the only cube in Oracle Retail Data Model which is setup
for cube based Materialized View Query Rewrite capability.

See also: The discussion on querying dimensional objects in Oracle
OLAP User's Guide and Chapter 5, "Report and Query Customization."

Dimensional Components in the Oracle Retail Data Model

Access Layer Customization 3-15

Characteristics of the OLAP Cubes in Oracle Retail Data Model
The default access layer of Oracle Retail Data Model provides a dimensional
perspective of the data using Oracle OLAP cubes.

There are OLAP cubes defined in the default ordm_sys schema. These cubes have
the general characteristics described in "Characteristics of the OLAP Dimensional
Model" on page 3-12. Specifically, OLAP cubes in the Oracle Retail Data Model have
the following characteristics:

■ The cubes were defined and built using the Analytical Workspace Manager
(AWM) client tool.

■ OLAP cubes are loaded with data from DWB, DWD, and DWV tables (objects).

■ Some OLAP Cubes are related to the Sales and Inventory Forecast process. They
are not mapped to any relational source and data for these cubes is generated from
within the Oracle Retail Data Model OLAP Analytical Workspace.

■ A relational view (with a _VIEW suffix) is defined over each of the OLAP cubes.

■ Several of the OLAP cubes in the Oracle Retail Data Model have cube materialized
views enabled (that is, contain CB$ objects). These are the cubes: SLS, INV, and
SLSQR.

For information on the using OLAP cubes in your customized version of Oracle Retail
Data Model, see Oracle OLAP User's Guide and the following topics:

■ Defining New Oracle OLAP Cubes for Oracle Retail Data Model

■ Changing an Oracle OLAP Cube in Oracle Retail Data Model

■ Creating a Forecast Cube for Oracle Retail Data Model

■ Choosing a Cube Partitioning Strategy for Oracle Retail Data Model

■ Choosing a Cube Data Maintenance Method for Oracle Retail Data Model

Note: You cannot enable the cube materialized view for a forecast
cube. The cubes SLS, INV and SLSQR are the only cubes in Oracle
Retail Data Model which use this Cube based Materialized View
functionality.

Oracle by Example: For more information on working with OLAP
cubes, see the following OBE tutorials:

■ "Querying OLAP 11g Cubes"

■ "Using Oracle OLAP 11g With Oracle BI Enterprise Edition"

To access the tutorials, open the Oracle Learning Library in your
browser by following the instructions in "Oracle Technology Network"
on page xii; and, then, search for the tutorials by name.

See also: Oracle OLAP User's Guide

Dimensional Components in the Oracle Retail Data Model

3-16 Oracle Retail Data Model Implementation and Operations Guide

Defining New Oracle OLAP Cubes for Oracle Retail Data Model
You can add new OLAP cubes to the ordm_sys schema. For consistency's sake, design
and define these new cubes as described in "Characteristics of the OLAP Cubes in
Oracle Retail Data Model" on page 3-15.

Take the following steps to define new cubes:

1. Ensure that there is an appropriate relational object (table or view: either DWB_ , or
DWD_, or DWA_, or even a DWV_) to use as the "lowest leaf" level data for the cube.
Essentially this step is to ensure that the task of adding new cubes has been
designed correctly and that the implementation team is aware of the various
candidate source objects in Oracle Retail Data Model.

2. Use the AWM to define new Cubes for a customized version of Oracle Retail Data
Model. Follow the instructions given for creating cubes and dimensions in Oracle
OLAP User's Guide.

Use the information provided in "Characteristics of the OLAP Dimensional
Model" on page 3-12. and the Oracle OLAP User's Guide to guide you when you
design and define new OLAP cubes. Also, if you are familiar with a relational star
schema design as outlined in "Characteristics of Relational Star and Snowflake
Tables" on page 3-10, then you can use this understanding to help you design an
OLAP Cube:

■ Fact tables correspond to cubes.

■ Data columns in the fact tables correspond to measures.

■ Foreign key constraints in the fact tables identify the dimension tables.

■ Dimension tables identify the dimensions.

■ Primary keys in the dimension tables identify the base-level dimension
members.

■ Parent columns in the dimension tables identify the higher level dimension
members.

■ Columns in the dimension tables containing descriptions and characteristics of
the dimension members identify the attributes.

You can also get insights into the dimensional model by looking at the reports
included with Oracle Retail Data Model.

3. Add materialized view capabilities to the OLAP cubes as described in "Adding
Materialized View Capabilities" on page 3-14.

See: Oracle Retail Data Model Installation Guide for more information
on installing the sample reports and deploying the Oracle Retail Data
Model RPD and webcat on the Business Intelligence Suite Enterprise
Edition instance.

Tip: While investigating your source data, you may decide to create
relational views that more closely match the dimensional model that
you plan to create.

See also: Oracle OLAP User's Guide, "Defining New Oracle OLAP
Cubes for Oracle Retail Data Model" on page 3-16, and the sample
reports in Oracle Retail Data Model Reference.

Dimensional Components in the Oracle Retail Data Model

Access Layer Customization 3-17

Changing an Oracle OLAP Cube in Oracle Retail Data Model
Common customizations to Oracle Retail Data Model cubes are changing the
dimensions or the measures of the cube.

To change the measures or dimensions of one cube, you must take the following steps:

1. Use the information in Oracle Retail Data Model Reference to identify the relational
object, that is the table or view, from which the OLAP cube is populated.

2. Change the structure of the object identified in Step 1.

3. Change the OLAP cube and cube materialized views to reflect the new structure.

Creating a Forecast Cube for Oracle Retail Data Model
To create a forecast cube for Oracle Retail Data Model:

1. Create a cube to contain the results of the forecast as described in "Defining New
Oracle OLAP Cubes for Oracle Retail Data Model" on page 3-16.

2. Write an OLAP DML forecasting context program as described in Oracle OLAP
DML Reference.

Choosing a Cube Partitioning Strategy for Oracle Retail Data Model
Partitioning is a method of physically storing the contents of a cube. It improves the
performance of large cubes in the following ways:

■ Improves scalability by keeping data structures small. Each partition functions like
a smaller measure.

■ Keeps the working set of data smaller both for queries and maintenance, since the
relevant data is stored together.

■ Enables parallel aggregation during data maintenance. Each partition can be
aggregated by a separate process.

■ Simplifies removal of old data from storage. Old partitions can be dropped, and
new partitions can be added.

The number of partitions affects the database resources that can be allocated to loading
and aggregating the data in a cube. Partitions can be aggregated simultaneously when
sufficient resources have been allocated.

The Cube Partitioning Advisor analyzes the source tables and develops a partitioning
strategy. You can accept the recommendations of the Cube Partitioning Advisor, or you
can make your own decisions about partitioning.

Oracle by Example: For more information on creating OLAP cubes,
see the "Building OLAP 11g Cubes" OBE tutorial.

To access the tutorial, open the Oracle Learning Library in your
browser by following the instructions in "Oracle Technology Network"
on page xii; and, then, search for the tutorial by name.

Note: You cannot enable materialized views for an Oracle Retail
Data Model forecast cube.

Dimensional Components in the Oracle Retail Data Model

3-18 Oracle Retail Data Model Implementation and Operations Guide

If your partitioning strategy is driven primarily by life-cycle management
considerations, then you should partition the cube on the Time dimension. Old time
periods can then be dropped as a unit, and new time periods added as a new partition.
The Cube Partitioning Advisor has a Time option, which recommends a hierarchy and
a level in the Time dimension for partitioning.

The level on which to partition a cube is determined based on a trade off between load
performance and query performance.

Typically, you do not want to partition on too low a level (for example, on the DAY
level of a TIME dimension) because if you do then too many partitions must be
defined at load time which slows down an initial or historical load. Also, a large
number of partitions can result in unusually long Analytic Workspace attach times and
slows down the Time Series-based calculations. Also, a Quarterly Cumulative measure
(Quarter to Date Measure) needs to access 90 or 91 partitions to calculate a value for
one Customer and Organization. All dimension members above the partition level of
partition dimension (including those belonging to nondefault hierarchies) would be
present in a single default template. Day level partitioning makes this very heavy since
all higher level members are stored in default template. However, the advantage of
partitioning DAY if the OLAP Cube load frequency is daily then there you must only
load from a new partition in fact table into a single partition in the OLAP cube every
day. This greatly improves the load performance since percentage-based refresh can be
enabled if the cube is materialized-view enabled and has materialized-view logs.

Recommendations: Cube Partitioning Strategy
Usually a good compromise between the differing load and query performance
requirements is to use an intermediate level like MONTH as the partition level. Time
series calculations within a month (week to date, month to date, and so on) are fast
and higher level calculations such as year to date need to refer to 12 partitions at most.
Also this way the monthly partition is defined and created only one time (that is
during the initial load on first of each month) and is then reused for each subsequent
load that month. The aggregation process may be triggered off at the month level
(instead of specific day level) and some redundant aggregations (of previously loaded
dates of current month) may occur each time but it should result in satisfactory load
and query performance.

Choosing a Cube Data Maintenance Method for Oracle Retail Data Model
While developing a dimensional model of your data, it is a good idea to map and load
each object immediately after you create it so that you can immediately detect and
correct any errors that you made to the object definition or the mapping.

However, in a production environment, you should perform routine maintenance as
quickly and easily as possible. For this stage, you can choose among data maintenance
methods. You can refresh all cubes using the Maintenance Wizard. This wizard enables
you to refresh a cube immediately, or submit the refresh as a job to the Oracle job
queue, or generate a PL/SQL script. You can run the script manually or using a
scheduling utility, such as Oracle Enterprise Manager Scheduler or the DBMS_
SCHEDULER PL/SQL package. The generated script calls the BUILD procedure of the
DBMS_CUBE PL/SQL package. You can modify this script or develop one from the
start using this package.

See also: "The discussion on choosing a partition strategy in Oracle
OLAP User's Guide, "Indexes and Partitioned Indexes in Oracle Retail
Data Model" on page 2-11, and "Partitioning and Materialized Views"
on page 3-22.

Materialized Views in the Oracle Retail Data Model

Access Layer Customization 3-19

The data for a partitioned cube is loaded and aggregated in parallel when multiple
processes have been allocated to the build. You are able to see this in the build log.

In addition, each cube can support these data maintenance methods:

■ Custom cube scripts

■ Cube materialized views

If you are defining cubes to replace existing materialized views, then you use the
materialized views as an integral part of data maintenance. Note, however, that
materialized view capabilities restrict the types of analytics that can be performed by a
custom cube script.

Materialized Views in the Oracle Retail Data Model
Materialized views are query results that have been stored or "materialized" in
advance as schema objects. From a physical design point of view, materialized views
resemble tables or partitioned tables and behave like indexes in that they are used
transparently and improve performance.

In the past, organizations using summaries spent a significant amount of time and
effort creating summaries manually, identifying which summaries to create, indexing
the summaries, updating them, and advising their users on which ones to use. With
the advent of materialized views, a database administrator creates one or more
materialized views, which are the equivalent of a summary. Thus, the workload of the
database administrator is eased and the user no longer needed to be aware of the
summaries that had been defined. Instead, the end user queries the tables and views at
the detail data level. The query rewrite mechanism in the Oracle server automatically
rewrites the SQL query to use the summary tables and reduces response time for
returning results from the query.

Materialized views improve query performance by precalculating expensive join and
aggregation operations on the database before executing and storing the results in the
database. The query optimizer automatically recognizes when it can use an existing
materialized view to satisfy a request.

The default Oracle Retail Data Model defines many materialized views. In the default
ordm_sys schema, you can identify these materialized views by looking at objects
with the prefixes listed in the following table.

See also: Oracle OLAP User's Guide and "Types of Materialized
Views and Refresh options" on page 3-20

Oracle by Example: See the following OBE tutorial for an example of
how Oracle uses cube materialized views for transparent access to a
relational star schema:

■ "Querying OLAP 11g Cubes"

To access the tutorial, open the Oracle Learning Library in your
browser by following the instructions in "Oracle Technology Network"
on page xii; and, then, search for the tutorial by name.

Materialized Views in the Oracle Retail Data Model

3-20 Oracle Retail Data Model Implementation and Operations Guide

The following topics provide more information on using and creating materialized
views in your customized Oracle Retail Data Model:

■ Types of Materialized Views and Refresh options

■ Choosing Indexes for Materialized Views

■ Partitioning and Materialized Views

■ Compressing Materialized Views

Types of Materialized Views and Refresh options
Refresh option vary by the type of materialized view:

■ Refresh Options for Materialized Views with Aggregates

■ Refresh Options for Materialized Views Containing Only Joins

■ Refresh Options for Nested Materialized Views

Refresh Options for Materialized Views with Aggregates
In data warehouses, materialized views normally contain aggregates. The DWA_ tables
in the default Oracle Retail Data Model are this type of materialized view.

For a materialized view with aggregates, for fast refresh to be possible:

■ The SELECT list must contain all of the GROUP BY columns (if present)

■ There must be a COUNT(*) and a COUNT(column) on any aggregated columns.

■ Materialized view logs must be present on all tables referenced in the query that
defines the materialized view. The valid aggregate functions are: SUM, COUNT(x),
COUNT(*), AVG, VARIANCE, STDDEV, MIN, and MAX, and the expression to be
aggregated can be any SQL value expression.

Prefix Description

DWA_ Aggregate table or relational materialized view. This prefix is generalized for
aggregate tables. Aggregate objects are implemented using either Materialized
Views or tables.

See: Aggregate tables in Oracle Retail Data Model Reference for a list of these
objects in the default data model.

CB$ Materialized view used to support/deliver required functionality for an Oracle
OLAP cube. This is an internal object built and maintained automatically by the
Oracle OLAP server in the database.

See: OLAP cube materialized views in Oracle Retail Data Model Reference for a list
of these objects in the default data model.

"Characteristics of the OLAP Cubes in Oracle Retail Data Model" on page 3-15
for information on OLAP cubes.

Note: Do not report or query against this object. Instead access the relational
view of an OLAP cube (that is, the object with the _VIEW suffix).

DMV_ Data mining views that are not an aggregate table or a cube materialized view.

See: Oracle Retail Data Model Reference to identify these objects in the default data
model.

See: Oracle OLAP User's Guide for a discussion of creating
materialized views of Oracle OLAP cubes.

Materialized Views in the Oracle Retail Data Model

Access Layer Customization 3-21

Fast refresh for a materialized view containing joins and aggregates is possible after
any type of DML to the base tables (direct load or conventional INSERT, UPDATE, or
DELETE).

You can define that the materialized view be refreshed ON COMMIT or ON DEMAND. A
REFRESH ON COMMIT materialized view is automatically refreshed when a
transaction that does DML to a materialized view's detail tables commits.

When you specify REFRESH ON COMMIT, the table commit can take more time than if
you have not. This is because the refresh operation is performed as part of the commit
process. Therefore, this method may not be suitable if many users are concurrently
changing the tables upon which the materialized view is based.

Refresh Options for Materialized Views Containing Only Joins
Some materialized views contain only joins and no aggregates (for example, when a
materialized view is created that joins the sales table to the times and customers
tables). The advantage of creating this type of materialized view is that expensive joins
are precalculated.

Fast refresh for a materialized view containing only joins is possible after any type of
DML to the base tables (direct-path or conventional INSERT, UPDATE, or DELETE).

A materialized view containing only joins can be defined to be refreshed ON COMMIT
or ON DEMAND. If it is ON COMMIT, the refresh is performed at commit time of the
transaction that does DML on the materialized view's detail table.

If you specify REFRESH FAST, Oracle Database performs further verification of the
query definition to ensure that fast refresh can be performed if any of the detail tables
change. These additional checks are:

■ A materialized view log must be present for each detail table unless the table
supports partition change tracking. Also, when a materialized view log is
required, the ROWID column must be present in each materialized view log.

■ The rowids of all the detail tables must appear in the SELECT list of the
materialized view query definition.

If some of these restrictions are not met, you can create the materialized view as
REFRESH FORCE to take advantage of fast refresh when it is possible. If one table does
not meet all of the criteria, but the other tables do the materialized view is still fast
refreshable with respect to the other tables for which all the criteria are met.

To achieve an optimally efficient refresh:

■ Ensure that the defining query does not use an outer join that behaves like an
inner join. If the defining query contains such a join, consider rewriting the
defining query to contain an inner join.

■ If the materialized view contains only joins, the ROWID columns for each table (and
each instance of a table that occurs multiple times in the FROM list) must be present
in the SELECT list of the materialized view.

■ If the materialized view has remote tables in the FROM clause, all tables in the
FROM clause must be located on that same site. Further, ON COMMIT refresh is not
supported for materialized view with remote tables. Except for SCN-based
materialized view logs, materialized view logs must be present on the remote site
for each detail table of the materialized view and ROWID columns must be
present in the SELECT list of the materialized view.

Materialized Views in the Oracle Retail Data Model

3-22 Oracle Retail Data Model Implementation and Operations Guide

Refresh Options for Nested Materialized Views
A nested materialized view is a materialized view whose definition is based on
another materialized view. A nested materialized view can reference other relations in
the database in addition to referencing materialized views.

In a data warehouse, you typically create many aggregate views on a single join (for
example, rollups along different dimensions). Incrementally maintaining these distinct
materialized aggregate views can take a long time, because the underlying join has to
be performed many times.

Using nested materialized views, you can create multiple single-table materialized
views based on a joins-only materialized view and the join is performed just one time.
In addition, optimizations can be performed for this class of single-table aggregate
materialized view and thus refresh is very efficient.

Some types of nested materialized views cannot be fast refreshed. Use EXPLAIN_
MVIEW to identify those types of materialized views.

You can refresh a tree of nested materialized views in the appropriate dependency
order by specifying the nested =TRUE parameter with the DBMS_MVIEW.REFRESH
parameter.

Example 3–2 Refreshing Oracle Retail Data Model Nested Materialized Views

For example, if you call DBMS_MVIEW.REFRESH ('DWA_CUST_TYP_ORDR_DEPT_
MO', nested => TRUE), the REFRESH procedure first refreshes the DWA_CUST_
TYP_ORDR_SBC_WK materialized view, and then refreshes the DWA_CUST_TYP_
ORDR_DEPT_MO materialized view.

Choosing Indexes for Materialized Views
The two most common operations on a materialized view are query execution and fast
refresh, and each operation has different performance requirements:

■ Query execution might need to access any subset of the materialized view key
columns, and might need to join and aggregate over a subset of those columns.
Consequently, for best performance, create a single-column bitmap index on each
materialized view key column.

■ In the case of materialized views containing only joins using fast refresh, create
indexes on the columns that contain the rowids to improve the performance of the
refresh operation.

■ If a materialized view using aggregates is fast refreshable, then an index
appropriate for the fast refresh procedure is created unless USING NO INDEX is
specified in the CREATE MATERIALIZED VIEW statement.

Partitioning and Materialized Views
Because of the large volume of data held in a data warehouse, partitioning is an
extremely useful option when designing a database. Partitioning the fact tables
improves scalability, simplifies system administration, and makes it possible to define
local indexes that can be efficiently rebuilt. Partitioning the fact tables also improves
the opportunity of fast refreshing the materialized view because this may enable
partition change tracking refresh on the materialized view.

See also: "Indexes and Partitioned Indexes in Oracle Retail Data
Model" on page 2-11

Materialized Views in the Oracle Retail Data Model

Access Layer Customization 3-23

Partitioning a materialized view has the same benefits as partitioning fact tables.
When a materialized view is partitioned a refresh procedure can use parallel DML in
more scenarios and partition change tracking-based refresh can use truncate partition
to efficiently maintain the materialized view.

Using Partition Change Tracking
It is possible and advantageous to track freshness to a finer grain than the entire
materialized view. The ability to identify which rows in a materialized view are
affected by a certain detail table partition, is known as partition change tracking. When
one or more of the detail tables are partitioned, it may be possible to identify the
specific rows in the materialized view that correspond to a modified detail partition(s).
those rows become stale when a partition is modified while all other rows remain
fresh.

You can use partition change tracking to identify which materialized view rows
correspond to a particular partition. Partition change tracking is also used to support
fast refresh after partition maintenance operations on detail tables. For instance, if a
detail table partition is truncated or dropped, the affected rows in the materialized
view are identified and deleted. Identifying which materialized view rows are fresh or
stale, rather than considering the entire materialized view as stale, allows query
rewrite to use those rows that refresh while in QUERY_REWRITE_INTEGRITY =
ENFORCED or TRUSTED modes.

Several views, such as DBA_MVIEW_DETAIL_PARTITION, detail which partitions are
stale or fresh. Oracle does not rewrite against partial stale materialized views if
partition change tracking on the changed table is enabled by the presence of join
dependent expression in the materialized view.

To support partition change tracking, a materialized view must satisfy the following
requirements:

■ At least one detail table referenced by the materialized view must be partitioned.

■ Partitioned tables must use either range, list or composite partitioning.

■ The top level partition key must consist of only a single column.

■ The materialized view must contain either the partition key column or a partition
marker or ROWID or join dependent expression of the detail table.

■ If you use a GROUP BY clause, the partition key column or the partition marker or
ROWID or join dependent expression must be present in the GROUP BY clause.

■ If you use an analytic window function or the MODEL clause, the partition key
column or the partition marker or ROWID or join dependent expression must be
present in their respective PARTITION BY subclauses.

■ Data modifications can only occur on the partitioned table. If partition change
tracking refresh is being done for a table which has join dependent expression in
the materialized view, then data modifications should not have occurred in any of
the join dependent tables.

■ The COMPATIBILITY initialization parameter must be a minimum of 9.0.0.0.0.

See also: Oracle Database VLDB and Partitioning Guide, "Partitioned
Tables in Oracle Retail Data Model" on page 2-12, "Indexes and
Partitioned Indexes in Oracle Retail Data Model" on page 2-11, and
"Choosing a Cube Partitioning Strategy for Oracle Retail Data Model"
on page 3-17

Materialized Views in the Oracle Retail Data Model

3-24 Oracle Retail Data Model Implementation and Operations Guide

■ Partition change tracking is not supported for a materialized view that refers to
views, remote tables, or outer joins.

Compressing Materialized Views
Using data compression for a materialized view brings you a additional dramatic
performance improvement.

Consider data compression when using highly redundant data, such as tables with
many foreign keys. In particular, likely candidates are materialized views created with
the ROLLUP clause.

See also: "Data Compression in Oracle Retail Data Model" on
page 2-9

4

ETL Implementation and Customization 4-1

4ETL Implementation and Customization

This chapter discusses the ETL (Extraction, Transformation and Loading) procedures
you use to populate an Oracle Retail Data Model warehouse. It includes the following
topics:

■ The Role of ETL in the Oracle Retail Data Model

■ Creating Source-ETL for Oracle Retail Data Model

■ Customizing Intra-ETL for the Oracle Retail Data Model

■ Performing an Initial Load of an Oracle Retail Data Model Warehouse

■ Refreshing the Data in Oracle Retail Data Model Warehouse

■ Managing Errors During Oracle Retail Data Model Intra-ETL Execution

The Role of ETL in the Oracle Retail Data Model
Figure 2–1 shows the three layers in Oracle Retail Data Model warehouse
environment: the optional staging layer, the foundation layer, and the access layer. As
shown in Figure 4–1, you use two types of ETL (extraction, transformation and
loading) to populate these layers:

■ Source-ETL. ETL that populates the staging layer (if any) or the foundation layer
with data from the transactional system is known as source ETL.

Oracle Retail Data Model does not include source-ETL. You must create
source-ETL yourself using your understanding of your transactional system and
your customized Oracle Retail Data Model. See "Creating Source-ETL for Oracle
Retail Data Model" on page 4-2 for more information on creating source-ETL.

■ Intra-ETL. ETL that populates the access layer using the data in the foundation
layer is known as intra-ETL.

Oracle Retail Data Model does include intra-ETL. You can modify the default
intra-ETL to populate a customized access layer from a customized foundation
layer. See "Customizing Intra-ETL for the Oracle Retail Data Model" on page 4-9
for more information on the intra-ETL.

Creating Source-ETL for Oracle Retail Data Model

4-2 Oracle Retail Data Model Implementation and Operations Guide

Figure 4–1 ETL Flow Diagram

Creating Source-ETL for Oracle Retail Data Model
ETL that populates the staging layer or the foundation layer of an Oracle Retail Data
Model warehouse with data from a transactional system is known as source-ETL.

Due to the large number of available transactional applications and multiple versions
that may be in use, source-ETL is not provided with Oracle Retail Data Model. You
must write your own source-ETL scripts using Oracle Warehouse Builder or another
ETL tool or mapping tool.

See also: Oracle Warehouse Builder Data Modeling, ETL, and Data
Quality Guide.

Creating Source-ETL for Oracle Retail Data Model

ETL Implementation and Customization 4-3

The following topics provide general information about writing source-ETL:

■ Source-ETL Design Considerations

■ ETL Architecture for Oracle Retail Data Model Source-ETL

■ Creating a Source to Target Mapping Document for the Source-ETL

■ Designing a Plan for Rectifying Source-ETL Data Quality Problems

■ Designing Source-ETL Workflow and Jobs Control

■ Designing Source-ETL Exception Handling

■ Writing Source-ETL that Loads Efficiently

Source-ETL Design Considerations
Keep the following points in mind when designing and writing source-ETL for Oracle
Retail Data Model:

■ You can populate the calendar data using the calendar population scripts provided
with Oracle Retail Data Model (the calendar population scripts populate data for
the business and gregorian calendars, other calendars need to be populated using
source ETL). See Oracle Retail Data Model Reference for more information on the
Oracle Retail Data Model calendar population scripts.

■ Populate the tables in the following order:

1. Lookup tables

2. Reference tables

3. Base tables

■ Analyze the tables in one category before loading the tables in the next category
(for example, analyze the reference tables before loading the lookup tables).
Additionally, you must analyze all of the tables loaded by the source-ETL process
before executing the intra-ETL processes).

Oracle By Example: See the following OBE tutorials for more
information on Oracle Warehouse Builder:

■ "Setting Up the Oracle Warehouse Builder 11g Release 2
Environment"

■ "Improved User Interface, Usability, and Productivity With OWB
11g"

■ "Using Data Transformation Operators with Source and Target
Operators"

■ "Working with Pluggable Mappings"

■ "Examining Source Data Using Data Profiling with Database 11g
Release 2"

To access the tutorials, open the Oracle Learning Library in your
browser by following the instructions in "Oracle Technology Network"
on page xii; and, then, search for the tutorials by name.

See: The topic about analyzing tables, indexes and clusters in Oracle
Database Administrator's Guide.

Creating Source-ETL for Oracle Retail Data Model

4-4 Oracle Retail Data Model Implementation and Operations Guide

ETL Architecture for Oracle Retail Data Model Source-ETL
ETL typically extracts data from the transactional system, checks for data quality,
cleanses the data and ensures consistency of terms, currency, units of measures, and so
on, as it consolidates and populates the physical objects in the data warehouse with
'clean' data.

The fundamental services upon which data acquisition is constructed are as follows:

■ Data sourcing

■ Data movement

■ Data transformation

■ Data loading

From a logical architecture perspective, there are many different ways to configure
these building blocks for delivering data acquisition services. The major architectural
styles available that cover a range of options to be targeted within a data warehousing
architecture include:

■ Batch Extract, Transform, and Load and Batch Extract, Load, Transform, Load

Batch Extract, Transform and Load (ETL) and Batch Extract, Load, Transform,
Load (ELTL) are the traditional architectures in a data warehouse implementation.
The difference between these is where the transformation proceeds, in or out of the
database.

■ Batch Hybrid Extract, Transform, Load, Transform, Load

Batch Hybrid Extract, Transform, Load, Transform, Load (ETLTL) is a hybrid
strategy. This strategy provides the most flexibility to remove hand coding
approaches to transformation design, apply a metadata-driven approach, and still
be able to leverage the data processing capabilities of the enterprise warehouse. In
this targeted design, the transformation processing is first performed outside the
warehouse as a pre-processing step before loading the staging tables, and then
further transformation processing is performed within the data warehouse before
the final load into the target tables.

■ Real-time Extract, Transform, Load

Real-time Extract, Transform, Load (rETL) is appropriate when service levels for
data freshness demand more up-to-date information in the data warehousing
environment. In this approach, the transactional system must actively publish
events of interest so that the rETL processes can extract them from a message bus
(queue) on a timely basis. A message-based paradigm is used with publish and
subscribe message bus structures or point-to-point messaging with reliable
queues.

When designing source-ETL for Oracle Retail Data Model, use the architecture that
best meets your business needs.

Creating a Source to Target Mapping Document for the Source-ETL
Before you begin building your extract systems, create a logical data interface
document that maps the relationship between original source columns and target
destination columns in the tables. This document ties the very beginning of the ETL
system to the very end.

Columns in the data mapping document are sometimes combined. For example, the
source database, table name, and column name could be combined into a single target
column. The information within the concatenated column would be delimited with a

Creating Source-ETL for Oracle Retail Data Model

ETL Implementation and Customization 4-5

period. Regardless of the format, the content of the logical data mapping document
has been proven to be the critical element required to sufficiently plan ETL processes.

Designing a Plan for Rectifying Source-ETL Data Quality Problems
Data cleaning consists of all the steps required to clean and validate the data feeding a
table and to apply known business rules to make the data consistent. The perspectives
of the cleaning and conforming steps are less about the upside potential of the data
and more about containment and control.

If there are data quality problems, then build a plan, in agreement with IT and
business users, for how to rectify these problems.

Answer the following questions:

■ Is data missing?

■ Is the data wrong or inconsistent?

■ Should the problem be fixed in the source systems?

Set up the following processes and programs:

■ Data quality measurement process.

■ Data quality reporting and action program and people responsibility.

Designing Source-ETL Workflow and Jobs Control
All data movement among ETL processes are composed of jobs. An ETL workflow
executes these jobs in the proper sequence and with regard to the necessary
dependencies. General ETL tools, such as Oracle Warehouse Builder, support this kind
of workflow, job design, and execution control.

The following list includes tips for when you design ETL jobs and workflow:

■ Use common structure across all jobs (source system to transformer to target data
warehouse).

■ Have a one-to-one mapping from source to target.

■ Define one job per Source table.

■ Apply generic job structure and template jobs to allow for rapid development and
consistency.

■ Use an optimized job design to leverage Oracle load performance based on data
volumes.

■ Design parameterized job to allow for greater control over job performance and
behavior.

■ Maximize Jobs parallelism execution.

Designing Source-ETL Exception Handling
Your ETL tool or your developed mapping scripts generate status and error handling
tables. All ETL procedures log status and errors into a log table. Execution status may
be monitored using an ETL tool or by examining the log table.

Creating Source-ETL for Oracle Retail Data Model

4-6 Oracle Retail Data Model Implementation and Operations Guide

Writing Source-ETL that Loads Efficiently
Whether you are developing mapping scripts and loading into a staging layer or
directly into the foundation layer the goal is to get the data into the warehouse in the
most expedient manner. To achieve good performance during the load you must begin
by focusing on where the data to be loaded resides and how you load it into the
database. For example, you should not use a serial database link or a single JDBC
connection to move large volumes of data. The most common and preferred
mechanism for loading large volumes of data is loading from flat files.

The following topics discuss best practices for ensuring your source-ETL loads
efficiently:

■ Using a Staging Area for Flat Files

■ Preparing Raw Data Files for Source-ETL

■ Source-ETL Data Loading Options

■ Parallel Direct Path Load Source-ETL

■ Source-ETL Data Loading Options

Using a Staging Area for Flat Files
The area where flat files are stored before being loaded into the staging layer of a data
warehouse system is commonly known as staging area. The overall speed of your load
is determined by:

■ How quickly the raw data can be read from staging area.

■ How quickly the raw data can be processed and inserted into the database.

Recommendations: Using a Staging Area
Stage the raw data across as many physical disks as possible to ensure that reading it is
not a bottleneck during the load.

Also, if you are using the Oracle Exadata Database Machine, the best place to stage the
data is in an Oracle Database File System (DBFS) stored on the Exadata storage cells.
DBFS creates a mountable cluster file system which can you can use to access files
stored in the database. Create the DBFS in a separate database on the Database
Machine. This allows the DBFS to be managed and maintained separately from the
data warehouse.

Mount the file system using the DIRECT_IO option to avoid thrashing the system page
cache while moving the raw data files in and out of the file system.

Preparing Raw Data Files for Source-ETL
To parallelize the data load Oracle Database must be able to logically break up the raw
data files into chunks, known as granules. To ensure balanced parallel processing, the
number of granules is typically much higher than the number of parallel server
processes. At any given point in time, a parallel server process is allocated one granule
to work on. After a parallel server process completes working on its granule, another
granule is allocated until all of the granules are processed and the data is loaded.

Recommendations: Preparing Raw Data Files for Source-ETL
Follow these recommendations:

See: Oracle Database SecureFiles and Large Objects Developer's Guide
for more information on setting up DBFS.

Creating Source-ETL for Oracle Retail Data Model

ETL Implementation and Customization 4-7

■ Deliminate each row using a known character such as a new line or a semicolon.
This ensures that Oracle can look inside the raw data file and determine where
each row of data begins and ends to create multiple granules within a single file.

■ If a file is not position-able and seek-able (for example the file is compressed or zip
file), then the files cannot be broken up into granules and the entire file is treated
as a single granule. In this case, only one parallel server process can work on the
entire file. To parallelize the loading of compressed data files, use multiple
compressed data files. The number of compressed data files used determines the
maximum parallel degree used by the load.

■ When loading multiple data files (compressed or uncompressed):

■ Use a single external table, if at all possible

■ Make the files similar in size

■ Make the size of the files a multiple of 10 MB

■ If you must have files of different sizes, list the files from largest to smallest. By
default, Oracle assumes that the flat file has the same character set as the database.
If this is not the case, specify the character set of the flat file in the external table
definition to ensure the proper character set conversions can take place.

Source-ETL Data Loading Options
Oracle offers several data loading options

■ External table or SQL*Loader

■ Oracle Data Pump (import and export)

■ Change Data Capture and Trickle feed mechanisms (such as Oracle GoldenGate)

■ Oracle Database Gateways to open systems and mainframes

■ Generic Connectivity (ODBC and JDBC)

The approach that you take depends on the source and format of the data you receive.

Recommendations: Loading Flat Files
If you are loading from files into Oracle Database you have two options: SQL*Loader
or external tables.

Using external tables offers the following advantages:

■ Allows transparent parallelization inside the database.

■ You can avoid staging data and apply transformations directly on the file data
using arbitrary SQL or PL/SQL constructs when accessing external tables. SQL
Loader requires you to load the data as-is into the database first.

■ Parallelizing loads with external tables enables a more efficient space management
compared to SQL*Loader, where each individual parallel loader is an independent
database sessions with its own transaction. For highly partitioned tables this could
potentially lead to a lot of wasted space.

Create an external table using the standard CREATE TABLE statement. However, to load
from flat files the statement must include information about where the flat files reside
outside the database. The most common approach when loading data from an external
table is to issue a CREATE TABLE AS SELECT (CTAS) statement or an INSERT AS SELECT
(IAS) statement into an existing table.

Creating Source-ETL for Oracle Retail Data Model

4-8 Oracle Retail Data Model Implementation and Operations Guide

Parallel Direct Path Load Source-ETL
A direct path load parses the input data according to the description given in the
external table definition, converts the data for each input field to its corresponding
Oracle Database data type, then builds a column array structure for the data. These
column array structures are used to format Oracle data blocks and build index keys.
The newly formatted database blocks are then written directly to the database,
bypassing the standard SQL processing engine and the database buffer cache.

The key to good load performance is to use direct path loads wherever possible:

■ A CREATE TABLE AS SELECT (CTAS) statement always uses direct path load.

■ A simple INSERT AS SELECT (IAS) statement does not use direct path load. In
order to achieve direct path load with an IAS statement you must add the APPEND
hint to the command.

Direct path loads can also run in parallel. To set the parallel degree for a direct path
load, either:

■ Add the PARALLEL hint to the CTAS statement or an IAS statement.

■ Set the PARALLEL clause on both the external table and the table into which the data
is loaded.

After the parallel degree is set:

■ A CTAS statement automatically performs a direct path load in parallel.

■ An IAS statement does not automatically perform a direct path load in
parallel. To enable an IAS statement to perform direct path load in parallel,
you must alter the session to enable parallel DML by executing the following
statement.

alter session enable parallel DML;

Partition Exchange Load for Oracle Retail Data Model Source-ETL
A benefit of partitioning is the ability to load data quickly and easily with minimal
impact on the business users by using the EXCHANGE PARTITION command. The
EXCHANGE PARTITION command enables swapping the data in a nonpartitioned table
into a particular partition in your partitioned table. The EXCHANGE PARTITION
command does not physically move data, instead it updates the data dictionary to
exchange a pointer from the partition to the table and vice versa.

Because there is no physical movement of data, an exchange does not generate redo
and undo. In other words, an exchange is a sub-second operation and far less likely to
impact performance than any traditional data-movement approaches such as INSERT.

Recommendations: Partitioning Tables
Partition the larger tables and fact tables in the Oracle Retail Data Model warehouse.

Example 4–1 Using Exchange Partition Statement with a Partitioned Table

Assume that there is a large table called Sales, which is range partitioned by day. At
the end of each business day, data from the online sales system is loaded into the
Sales table in the warehouse.

The following steps ensure the daily data gets loaded into the correct partition with
minimal impact to the business users of the data warehouse and optimal speed:

1. Create external table for the flat file data coming from the online system

Customizing Intra-ETL for the Oracle Retail Data Model

ETL Implementation and Customization 4-9

2. Using a CTAS statement, create a nonpartitioned table called tmp_sales that has the
same column structure as Sales table

3. Build any indexes that are on the Sales table on the tmp_sales table

4. Issue the EXCHANGE PARTITION command.

Alter table Sales exchange partition p2 with
 table top_sales including indexes without validation;

5. Gather optimizer statistics on the newly exchanged partition using incremental
statistics.

The EXCHANGE PARTITION command in this example, swaps the definitions of the
named partition and the tmp_sales table, so the data instantaneously exists in the
right place in the partitioned table. Moreover, with the inclusion of the INCLUDING
INDEXES and WITHOUT VALIDATION clauses, Oracle swaps index definitions and does
not check whether the data actually belongs in the partition - therefore, the exchange is
very quick.

Customizing Intra-ETL for the Oracle Retail Data Model
The Oracle Retail Data Model supports the use of ETL tools such as Oracle Warehouse
Builder to define the workflow to execute the intra-ETL process. You can, of course,
write your own Intra-ETL. However, an intra-ETL component is delivered with Oracle
Retail Data Model that is a process flow designed using the Oracle Warehouse Builder
Workflow component. This process flow is named ORDM_INTRA_ETL_FLW.

As shown in Figure 4–2, the ORDM_INTRA_ETL_FLW process flow uses the data in the
Oracle Retail Data Model base, reference, and lookup tables to populate all of the other
Oracle Retail Data Model structures. Within this package the dependency of each
individual program is implemented and enforced so that each program executes in the
proper order.

Note: The assumption being made in this example is that the data
integrity was verified at date extraction time. If you are unsure about
the data integrity, omit the WITHOUT VALIDATION clause so that the
Database checks the validity of the data.

Customizing Intra-ETL for the Oracle Retail Data Model

4-10 Oracle Retail Data Model Implementation and Operations Guide

Figure 4–2 ORDM Main Intra-ETL Process Flow

You can change the original intra-ETL script for your specific requirements. However,
perform a complete impact analysis before you make the change. Package the changes
as a patch to the original Oracle Retail Data Model intra-ETL mapping.

The ORDM_INTRA_ETL_FLW process flow consists of the following sub-processes and
includes the dependency of individual sub-process flows and executes them in the
proper order:

■ ORDM_DERIVED_FLW

■ ORDM_AGG_N_DEP_FLW

■ ORDM_AGG_DEP_FLW

■ OLAP_MAP Mapping Flow

■ ORDM_MNNG_FLW

ORDM_DERIVED_FLW
The ORDM_DERIVED_FLW sub-process flow contains all the PL/SQL package code for
populating derived tables, based on the content of the base, reference, and lookup
tables.

Figure 4–3 shows the ORDM_DERIVED_FLW sub-process flow for populating derived
tables.

Customizing Intra-ETL for the Oracle Retail Data Model

ETL Implementation and Customization 4-11

Figure 4–3 Intra-ETL Derived Process Flow

After the ORDM_DERIVED_FLW starts successfully, it moves to the fork. The sub-process
FORK performs the derived ETL execution (these run in parallel). For each activity, a
record is inserted into a control table and the state is set to RUNNING and the respective
ETL is executed. Once ETL execution completes successfully, the control table record
that was inserted before ETL execution is updated with COMPLETED-SUCCESS status;
otherwise it is updated with COMPLETED-ERROR status.

The AND activity specifies whether all the parallel activities run to completion. Then
the flow switches to the next activity, for example END_SUCCESS.

This sub-process uses the following technologies:

■ Table: Whenever ETL package is executed, data is inserted into a derived table
based on the values of ETL parameters in the DWC_ETL_PARAMETER control table.

ORDM_AGG_N_DEP_FLW
For each activity, the ORDM_AGG_N_DEP_FLW sub-process flow invokes a PL/SQL
procedure for refreshing materialized views. The activities in the sub-process flow are
all independent, and hence can run in parallel. This sub-process flow has dependency
on ORDM_DERIVED_FLW sub-process, that is, ORDM_AGG_N_DEP_FLW is executed only ORDM_
DERIVED_FLW is executed successfully.

Figure 4–4 shows the ORDM_AGG_N_DEP_FLW sub-process flow for refreshing all
independent materialized views.

Customizing Intra-ETL for the Oracle Retail Data Model

4-12 Oracle Retail Data Model Implementation and Operations Guide

Figure 4–4 Intra-ETL Independent MV Process Flow

After the ORDM_AGG_N_DEP_FLW is initiated and starts successfully the flow moves to the
Fork. The FORK process makes the aggregates run in parallel. The AND activity specifies
all the parallel aggregates must complete; the flow then switches over to the next
activity, (for example, END_SUCCESS).

This sub-process uses the following technologies:

■ Materialized View: A materialized view is used to hold the aggregation data.
Whenever this is refreshed then the modified data are reflected in the
corresponding aggregate table and this leads to a significant increase in the query
execution performance. Moreover usage of materialized view allows Oracle Retail
Data Model to make use of the Oracle Query Rewrite feature for better SQL
optimization and hence improved performance.

■ FAST Refresh: This refresh type is used to refresh the aggregates with only the
incremental data (inserted and modified) in base and derived tables after the
immediately previous refresh and this incremental refresh leads to much better
performance and hence shorter intra-ETL window.

ORDM_AGG_DEP_FLW
For each activity, the ORDM_AGG_DEP_FLW sub-process flow invokes a PL/SQL
procedure for refreshing materialized views. The activities in the sub-process flow
have dependencies. This sub-process flow has dependency on ORDM_DERIVED_FLW
sub-process, that is, ORDM_AGG_DEP_FLW is executed only after ORDM_DERIVED_FLW runs
successfully.

Figure 4–5 shows the ORDM_AGG_DEP_FLW sub-process flow for refreshing all
independent materialized views.

Customizing Intra-ETL for the Oracle Retail Data Model

ETL Implementation and Customization 4-13

Figure 4–5 Intra-ETL Aggregate Process Flow

After the ORDM_AGG_DEP_FLW is initiated and starts successfully the process flow moves
to the Fork. The FORK process makes the aggregates to run in parallel. The AND
activity specifies all the parallel aggregates must complete, then the flow switches over
to the next activity, (for example, END_SUCCESS).

This sub-process uses the following technologies:

■ Materialized View: A materialized view holds the aggregation data. Whenever this
is refreshed then the modified data is reflected in the corresponding aggregate
table and this leads to a significant increase in the query execution performance.
Moreover usage of materialized view allows Oracle Retail Data Model to make use
of the Oracle Query Rewrite feature for better SQL optimization and hence
improved performance.

■ FAST Refresh: This refresh type is used to refresh the aggregates with only the
incremental data (inserted and modified) in base and derived tables after the
immediately previous refresh and this incremental refresh leads to much better
performance and hence shorter intra-ETL window.

OLAP_MAP Mapping Flow
The OLAP_MAP mapping invokes PKG_ORDM_OLAP_ETL_AW_LOAD.OLAP_ETL_AW_BUILD
function of OLAP ETL package that can load from Oracle Retail Data Model reference
and derived tables to Oracle Retail Data Model Analytical Workspace dimensions and
cubes respectively and calculate the forecast data. It reads OLAP ETL parameters from
DWC_OLAP_ETL_PARAMETER table.

Figure 4–6 shows the OLAP_MAP mapping that invokes the OLAP ETL package.

Performing an Initial Load of an Oracle Retail Data Model Warehouse

4-14 Oracle Retail Data Model Implementation and Operations Guide

Figure 4–6 OLAP Map Process Flow

ORDM_MNNG_FLW
The mining process flow, ORDM_MNNG_FLW, first refreshes mining source
materialized views then refreshes the mining models.

Figure 4–7 shows the mining process flow, ORDM_MNNG_FLW.

Figure 4–7 Mining Flow Process

Performing an Initial Load of an Oracle Retail Data Model Warehouse
Performing an initial load of an Oracle Retail Data Model is a multistep process:

1. Load the reference, lookup, and base tables Oracle Retail Data Model warehouse
by executing the source-ETL that you have written using the guidelines given in
"Creating Source-ETL for Oracle Retail Data Model" on page 4-2.

2. Load the remaining structures in the Oracle Retail Data Model, by taking the
following steps:

a. Update the parameters in DWC_ETL_PARAMETER control table in the ordm_sys
schema so that the ETL can use this information (that is, the beginning and
end date of the ETL period) when loading the derived and aggregate tables
and views.

For an initial load of an Oracle Retail Data Model warehouse, specify the
values shown in the following table.

Performing an Initial Load of an Oracle Retail Data Model Warehouse

ETL Implementation and Customization 4-15

b. Update the Oracle Retail Data Model OLAP ETL parameters in DWC_OLAP_ETL_
PARAMETER control table in the ordm_sys schema to specify the build method
and other build characteristics so that the ETL can use this information when
loading the OLAP cube data.

For an initial load of the analytic workspace, specify values following the
guidelines in Table 4–1.

Columns Value

PROCESS_NAME 'ORDM-INTRA-ETL'

FROM_DATE_ETL The beginning date of the ETL period.

TO_DATE_ETL The ending date of the ETL period.

See: Oracle Retail Data Model Reference for more information on the
DWC_ETL_PARAMETER control table.

Table 4–1 Explanation of Load Parameters in DWC_OLAP_ETL_PARAMETER Along with (typical) Initial
Load Values

Column Name Value

BUILD_METHOD Use the build method parameter to indicate a full or a fast (partial) refresh. The
following are the possible values for BUILD_METHOD:

■ C: Complete refresh clears all dimension values before loading. (Default value).

■ F: Fast refresh of a cube materialized view, which performs an incremental
refresh and re-aggregation of only changed rows in the source table.

■ ?: Fast refresh if possible, and otherwise a complete refresh.

■ P: Recomputes rows in a cube materialized view that are affected by changed
partitions in the detail tables.

■ S: Fast solve of a compressed cube. A fast solve reloads all the detail data and
re-aggregates only the changed values.

Note:

In a fast refresh, only changed rows are inserted in the cube and the affected areas of
the cube are re-aggregated.

The C, S, and ? methods always succeed and can be used on any cube.

The F and P methods require that the cube have a materialized view that was created
as a fast or a rewrite materialized view.

For initial load, specify C which specifies a complete refresh which clears all
dimension values before loading.

BUILD_METHOD_TYPE HISTORICAL or INCREMENTAL indicating whether this is an initial load of OLAP AW or
an incremental load of the OLAP AW.

For initial load, specify HISTORICAL

CALC_FCST One of the following values depending on whether you calculate forecast cubes:

■ Y specifies calculate forecast cubes.

■ N specifies do not calculate forecast cubes.

For initial load, specify Y.

Performing an Initial Load of an Oracle Retail Data Model Warehouse

4-16 Oracle Retail Data Model Implementation and Operations Guide

c. Execute the intra-ETL as described in "Executing the Default Oracle Retail
Data Model Intra-ETL" on page 4-16.

Executing the Default Oracle Retail Data Model Intra-ETL
Oracle Retail Data Model provides you with a database package named PKG_INTRA_
ETL_PROCESS that is a complete Intra-ETL process. This intra-ETL process is

CUBENAME One of the following values that specifies the cubes you build:

■ ALL specifies a build of the cubes in the Oracle Retail Data Model analytic
workspace.

■ cubename[[|cubename]...] specifies one or more cubes to build.

For initial load, specify ALL.

FCST_MTHD If the value for the CALC_FCST column is Y, then specify AUTO; otherwise, specify NULL.
Another valid value is MANUAL which sets the forecasting approach to APPMANUAL
instead of APPAUTO (APPAUTO and APPMANUAL are internal terms used by Oracle OLAP
Forecasting command). This parameter is ignored if CALC_FCST column is N.

For initial load, specify AUTO.

FCST_ST_MO If the value for the CALC_FCST column is Y, then specify value specified as BY YYYY MX
which is the "end business month" of a historical period; otherwise, specify NULL. This
parameter is ignored if CALC_FCST column is N. X is month number in a year.

For example:

BY 2011 M7, or BY 2011 M11

For the sample data present in the sample schema installed with Oracle Retail Data
Model Sample Reports, for initial load, specify:

 BY 2012 M1

HIST_ST_MO If the value for the CALC_FCST column is Y, then specify value specified as BY YYYY MX
which is the "start business month" of historical data; otherwise, specify NULL. This
parameter is ignored if CALC_FCST column is N. X is the month number in a year.

For example: BY 2011 M7, or BY 2011 M11

For the sample data present in the sample schema installed with Oracle Retail Data
Model Sample Reports, for initial load, specify:

 BY 2010 M1

MAXJOBQUEUES A decimal value that specifies the number of parallel processes to allocate to this job.
(Default value is 4.) The value that you specify varies depending on the setting of the
JOB_QUEUE_PROCESSES database initialization parameter.

For initial load, specify 4

NO_FCST_YRS If the value for the CALC_FCST column is Y, specify a decimal value that specifies how
many years forecast data to calculate; otherwise, specify NULL. This parameter is
ignored if CALC_FCST column is N.

For initial load, specify 2

OTHER1 Not used. Specify NULL.

OTHER2 Not used. Specify NULL.

PROCESS_NAME 'ORDM-OLAP-ETL'

See also: "Refreshing the Data in Oracle Retail Data Model
Warehouse" on page 4-18

Table 4–1 (Cont.) Explanation of Load Parameters in DWC_OLAP_ETL_PARAMETER Along with (typical)
Initial Load Values

Column Name Value

Performing an Initial Load of an Oracle Retail Data Model Warehouse

ETL Implementation and Customization 4-17

composed of individual population programs (database packages and MV refresh
scripts). This package includes the dependency for each individual program and
executes the programs in the proper order.

You can execute the intra-ETL packages provided with Oracle Retail Data Model in the
following ways.

■ As a Workflow within Oracle Warehouse Builder as described in "Executing the
ORDM_INTRA_ETL_FLW Workflow from Oracle Warehouse Builder" on
page 4-17.

■ Without using Oracle Warehouse Builder Workflow as described in "Executing the
Intra-ETL Without Using Oracle Warehouse Builder" on page 4-17.

Executing the ORDM_INTRA_ETL_FLW Workflow from Oracle Warehouse Builder
You can execute the ORDM_INTRA_ETL_FLW process from within Oracle Warehouse
Builder.

To deploy the ORDM_INTRA_ETL_FLW process flow, take the following steps:

1. Confirm that Oracle Warehouse Builder Workflow has been installed as described
in Oracle Retail Data Model Installation Guide.

2. Within Oracle Warehouse Builder, go to the Control Center Manager.

3. Select OLAP_PFLW, then select AGR_PFLW, then select the main process flow ORDM_
INTRA_ETL_FLW.

4. Right-click ORDM_INTRA_ETL_FLW and select set action.

■ If this is the first deployment, set action to Create.

■ If this is a later deployment, set action to Replace.

Deploy the process flow.

After the deployment finishes successfully, ORDM_INTRA_ETL_FLW is ready to execute.

Executing the Intra-ETL Without Using Oracle Warehouse Builder
You do not have to execute the Intra-ETL as a workflow in Oracle Warehouse Builder.
You can, instead, execute it as follows:

■ Executing the Intra-ETL by Using the PKG_INTRA_ETL_PROCESS.RUN
Procedure

Executing the Intra-ETL by Using the PKG_INTRA_ETL_PROCESS.RUN Procedure

You can use the PKG_INTRA_ETL_PROCESS.RUN procedure to start the Intra-ETL process.
This procedure can be invoked manually, or by another process such as Source-ETL, or
according to a predefined schedule such as Oracle Job Scheduling.

The database package PKG_INTRA_ETL_PROCESS is a complete Intra-ETL process
composed of individual population programs (database packages and MV refresh
scripts). This package includes dependency for each individual program and executes
the programs in the proper order.

See: "Monitoring the Execution of the Intra-ETL Process" on
page 4-20, "Recovering an Intra ETL Process" on page 4-21, and
"Troubleshooting Intra-ETL Performance" on page 4-21.

See: Oracle Warehouse Builder Sources and Targets Guide for
information about Oracle Warehouse Builder.

Refreshing the Data in Oracle Retail Data Model Warehouse

4-18 Oracle Retail Data Model Implementation and Operations Guide

PKG_INTRA_ETL_PROCESS.RUN does not accept parameters. This procedure calls other
programs in the correct order to load the data for current day (according to the Oracle
system date). The PKG_INTRA_ETL_PROCESS.RUN procedure uses the DWC_ control tables
to track the loading progress and results.

Refreshing the Data in Oracle Retail Data Model Warehouse
The section, "Performing an Initial Load of an Oracle Retail Data Model Warehouse"
on page 4-14 describes how to perform an initial load of an Oracle Retail Data Model
data warehouse. After this initial load, you must load new data into your Oracle Retail
Data Model data warehouse regularly so that it can serve its purpose of facilitating
business analysis.

To load new data into your Oracle Retail Data Model warehouse, you extract the data
from one or more operational systems and copy that data into the warehouse. The
challenge in data warehouse environments is to integrate, rearrange and consolidate
large volumes of data over many systems, thereby providing a new unified
information base for business intelligence.

The successive loads and transformations must be scheduled and processed in a
specific order that is determined by your business needs. Depending on the success or
failure of the operation or parts of it, the result must be tracked and subsequent,
alternative processes might be started.

You can do a full incremental load of the relational tables and views, OLAP cubes, and
data mining models simultaneously, or you can refresh the data sequentially, as
follows:

1. Refreshing Oracle Retail Data Model Relational Tables and Views

2. Refreshing Oracle Retail Data Model OLAP Cubes

3. Refreshing Oracle Retail Data Model Data Mining Models

In either case, you can manage errors during the execution of the intra-ETL as
described in "Managing Errors During Oracle Retail Data Model Intra-ETL Execution"
on page 4-20.

Refreshing Oracle Retail Data Model Relational Tables and Views
Refreshing the relational tables and views in an Oracle Retail Data Model is a
multi-step process:

1. Refresh the reference, lookup, and base tables in the Oracle Retail Data Model
warehouse with transactional data by executing the source-ETL that you have
written.

2. Update the parameters of the DWC_ETL_PARAMETER control table in the ordm_sys
schema. For an incremental load of an Oracle Retail Data Model warehouse,
specify the values shown in the following table (that is, the beginning and end
date of the ETL period).

Columns Value

PROCESS_NAME 'ORDM-INTRA-ETL'

FROM_DATE_ETL The beginning date of the ETL period.

TO_DATE_ETL The ending date of the ETL period.

Refreshing the Data in Oracle Retail Data Model Warehouse

ETL Implementation and Customization 4-19

3. Refresh the derived tables and aggregate tables which are materialized views in
Oracle Retail Data Model by executing the DRVD_FLOW and AGGR_FLOW subprocess
of the ORDM_INTRA_ETL_FLW process flow. See "Executing the Default Oracle Retail
Data Model Intra-ETL" on page 4-16 for more information.

Refreshing Oracle Retail Data Model OLAP Cubes
On a scheduled basis you must update the OLAP cube data with the relational data
that has been added to the Oracle Retail Data Model data warehouse since the initial
load of the OLAP cubes.

You can execute the Oracle Retail Data Model ETL to update the OLAP cubes in the
following ways

■ Refresh all of the data in the warehouse by executing the Oracle Warehouse
Builder Workflow ORDM_INTRA_ETL_FLW in one of the ways that are described in
"Executing the Default Oracle Retail Data Model Intra-ETL" on page 4-16.

The OLAP Cubes are populated through OLAP_MAP which is a part of Oracle Retail
Data Model intra-ETL main workflow ORDM_INTRA_ETL_FLW.

■ Refresh only the OLAP cube data by executing the OLAP_MAP Oracle Warehouse
Builder mapping in the Oracle Warehouse Builder control center.

Take these steps to perform an incremental load of the analytic workspace that is part
of the Oracle Retail Data Model warehouse:

1. Update the aggregate tables which are materialized views in Oracle Retail Data
Model. See "Refreshing Oracle Retail Data Model Relational Tables and Views" on
page 4-18 for more information.

2. Execute the intra-ETL to load the cube data in one of the ways described in
"Executing the Default Oracle Retail Data Model Intra-ETL" on page 4-16.

3. If necessary, to recover from errors during the execution of OLAP_MAP take the
following steps.

a. Change the value of the BUILD_METHOD column of the ordm_sys.DWC_OLAP_
ETL_PARAMETER table to "C".

b. In Oracle Warehouse Builder, rerun the OLAP_MAP map.

Refreshing Oracle Retail Data Model Data Mining Models
The MINING_FLW sub-process flow of the ORDM_INTRA_ETL_FLW process flow triggers the
data mining model refreshment. After the initial load of the warehouse, it is
recommended to refresh the data mining models monthly. Refreshing the data models
is integrated into the MINING_FLW sub-process flow. You can also manually refresh the
data models.

See: Oracle Retail Data Model Reference for more information on the
DWC_ETL_PARAMETER control table.

See also: Oracle Warehouse Builder Sources and Targets Guide

Note: You must refresh the corresponding materialized view of the
OLAP cubes you are refreshing before you execute OLAP_MAP. (For the
mapping between OLAP cube and materialized views, refer to Oracle
Retail Data Model Reference.

Managing Errors During Oracle Retail Data Model Intra-ETL Execution

4-20 Oracle Retail Data Model Implementation and Operations Guide

The way you refresh a data mining model varies depending on whether you want to
refresh all of the models or only one model:

■ To manually refresh all mining models, call the following procedure.

PKG_ordm_mining.REFRESH_MODEL(MONTH_CODE,P_PROCESS_NO)

This procedure performs the following tasks for each model:

1. Refreshes the mining source materialized views based on the latest data from
ordm_sys schema.

2. Trains each model on the new training data.

3. Applies each model onto the new apply data set.

■ To manually re-create only one mining model, you can call the corresponding
procedure. For example, to re-create the employee combination model, you can
call the following procedure.

create_emp_cmbntn_glmr_model;

"Tutorial: Customizing the Customer Life Time Value Prediction Data Mining
Model" on page 3-3 provides detailed instructions for refreshing a single data
mining model.

Managing Errors During Oracle Retail Data Model Intra-ETL Execution
This topic discusses how you can identify and manage errors during intra-ETL
execution. It contains the following topics:

■ Monitoring the Execution of the Intra-ETL Process

■ Recovering an Intra ETL Process

■ Troubleshooting Intra-ETL Performance

Monitoring the Execution of the Intra-ETL Process
Two ordm_sys schema control tables, DWC_INTRA_ETL_PROCESS and DWC_INTRA_ETL_
ACTIVITY, monitor the execution of the intra-ETL process. These tables are
documented in Oracle Retail Data Model Reference.

Each normal run (as opposed to an error-recovery run) of a separate intra-ETL
execution performs the following steps:

1. Inserts a record into the DWC_INTRA_ETL_PROCESS table with a monotonically
increasing system generated unique process key, SYSDATE as process start time,
RUNNING as the process status, and an input date range in the FROM_DATE_ETL and
TO_DATE_ETL columns.

2. Invokes each of the individual intra-ETL programs in the appropriate order of
dependency. Before the invocation of each program, the procedure inserts a record
into the intra-ETL Activity detail table, DWC_INTRA_ETL_ACTIVITY, with values for:

■ ACTIVITY_KEY, a system generated unique activity key.

■ PROCESS_KEY, the process key value corresponding to the intra-ETL process.

■ ACTIVITY_NAME, an individual program name.

See also: "Troubleshooting Data Mining Model Creation" on
page 4-22

Managing Errors During Oracle Retail Data Model Intra-ETL Execution

ETL Implementation and Customization 4-21

■ ACTIVITY_DESC, a suitable activity description.

■ ACTIVITY_START_TIME, the value of SYSDATE.

■ ACTIVITY_STATUS, the value of RUNNING.

3. Updates the corresponding record in the DWC_INTRA_ETL_ACTIVITY table for the
activity end time and activity status after the completion of each individual ETL
program (either successfully or with errors). For successful completion of the
activity, the procedure updates the status as 'COMPLETED-SUCCESS'. When an error
occurs, the procedure updates the activity status as 'COMPLETED-ERROR', and also
updates the corresponding error detail in the ERROR_DTL column.

4. Updates the record corresponding to the process in the DWC_INTRA_ETL_ PROCESS
table for the process end time and status, after the completion of all individual
intra-ETL programs. When all the individual programs succeed, the procedure
updates the status to 'COMPLETED-SUCCESS', otherwise it updates the status to
'COMPLETED-ERROR'.

You can monitor the execution state of the intra-ETL, including current process
progress, time taken by individual programs, or the complete process, by viewing the
contents of the DWC_INTRA_ETL_PROCESS and DWC_INTRA_ETL_ACTIVITY tables
corresponding to the maximum process key. Monitoring can be done both during and
after the execution of the intra-ETL procedure.

Recovering an Intra ETL Process
To recover an intra-ETL process

1. Identify the errors by looking at the corresponding error details that are tracked
against the individual programs in the DWC_INTRA_ETL_ACTIVITY table.

2. Correct the causes of the errors.

3. Re-invoke the intra-ETL process.

The ORDM_INTRA_ETL_FLW process identifies whether it is a normal run or recovery run
by referring the DWC_INTRA_ETL_ACTIVITY table. During a recovery run, ORDM_INTRA_
ETL_FLW executes only the necessary programs. For example, in the case of a derived
population error as a part of the previous run, this recovery run executes the
individual derived population programs which produced errors in the previous run.
After their successful completion, the run executes the aggregate population programs
and materialized view refresh in the appropriate order.

In this way, the intra-ETL error recovery is almost transparent, without involving the
data warehouse or ETL administrator. The administrator must only correct the causes
of the errors and re-invoke the intra-ETL process. The intra-ETL process identifies and
executes the programs that generated errors.

Troubleshooting Intra-ETL Performance
To troubleshoot the performance of the intra-ETL:

■ Check the execution plan as described in "Checking the Execution Plan" on
page 4-22.

■ Monitor parallel DML executions as described in "Monitoring PARALLEL DML
Executions" on page 4-22.

■ Check that data mining models were created correctly as described in
"Troubleshooting Data Mining Model Creation" on page 4-22.

Managing Errors During Oracle Retail Data Model Intra-ETL Execution

4-22 Oracle Retail Data Model Implementation and Operations Guide

Checking the Execution Plan
Use SQLDeveloper or other tools to view the package body of the code generated by
Oracle Warehouse Builder.

For example, take the following steps to examine a map:

1. Copy out the main query statement from code viewer.

Copy from "CURSOR "AGGREGATOR_c" IS …." to end of the query, which is right
above another "CURSOR "AGGREGATOR_c$1" IS".

2. In SQLDeveloper worksheet, issue the following statement to turn on the parallel
DML:

Alter session enable parallel dml;

3. Paste the main query statement into another SQL Developer worksheet and view
the execution plan by clicking F6.

Carefully examine the execution plan to make the mapping runs according to a
valid plan.

Monitoring PARALLEL DML Executions
Check that you run the mapping in parallel mode by executing the following SQL
statement to count the executed "Parallel DML/Query" operations:

column name format a50
column value format 999,999
SELECT NAME, VALUE
FROM GV$SYSSTAT
WHERE UPPER (NAME) LIKE '%PARALLEL OPERATIONS%'
 OR UPPER (NAME) LIKE '%PARALLELIZED%'
 OR UPPER (NAME) LIKE '%PX%'
;

If you run mapping in parallel mode, you should see "DML statements parallelized"
increased by 1 (one) every time the mapping was invoked. If not, you do not see this
increase, then the mapping was not invoked as "parallel DML".

If you see "queries parallelized" increased by 1 (one) instead, then typically it means
that the SELECT statement inside of the INSERT was parallelized, but that INSERT itself
was not parallelized.

Troubleshooting Data Mining Model Creation
After the data mining models are created, check the error log in ordm_sys.dwc_intra_
etl_activity table. For example, execute the following code.

set line 160
col ACTIVITY_NAME format a30
col ACTIVITY_STATUS format a20
col error_dtl format a80
select activity_name, activity_status, error_dtl from dwc_intra_etl_activity;

If all models are created successfully, the activity_status is all "COMPLETED-SUCCESS". If
the activity_status is "COMPLETED-ERROR" for a certain step, check the ERROR_DTL
column, and fix the problem accordingly.

See also: "Parallel Execution in Oracle Retail Data Model" on
page 2-14

Managing Errors During Oracle Retail Data Model Intra-ETL Execution

ETL Implementation and Customization 4-23

The following examples illustrate how to troubleshoot some common error messages
returned in ERROR_DTL and ACTIVITY_NAME when working with Oracle Retail Data
Model:

■ Example 4–2, "Troubleshooting an ORA-20991 Error for Oracle Retail Data Model"

■ Example 4–3, "Troubleshooting the "Message not available ... [Language=ZHS]"
Error"

■ Example 4–4, "Troubleshooting an ORA-40113 Error for Oracle Retail Data Model"

■ Example 4–5, "Troubleshooting an ORA-40112 Error for Oracle Retail Data Model"

■ Example 4–6, "Troubleshooting an ORG-11130 Error for Oracle Retail Data Model"

Example 4–2 Troubleshooting an ORA-20991 Error for Oracle Retail Data Model

Assume that the returned error is ORA-20991: Message not available ...
[Language=ZHS]CURRENT_MONTH_KEY.

This error may happen when there is not enough data in the DWR_BSNS_MO table. For
example, if the calendar data is populated with 2004~2009 data, the mining model
refresh for Year 2010 may result in this error.

To fix this error, execute the Oracle Retail Data Model calendar utility script again to
populate the calendar with sufficient data. For example:

Execute Calendar_Population.run('2005-01-01',10);

See Oracle Retail Data Model Reference for information on the calendar population utility
script.

Example 4–3 Troubleshooting the "Message not available ... [Language=ZHS]" Error

Assume that the returned error is Message not available ... [Language=ZHS].

'ZHS' is a code for a language. The language name it relates to can appear as different
name depending on the database environment. This error happens when ordm_
sys.DWC_MESSAGE.LANGUAGE does not contain messages for the current language.

Check the values in the DWC_MESSAGE table and, if required, update to the language
code specified by the Oracle session variable USERENV('lang').

Example 4–4 Troubleshooting an ORA-40113 Error for Oracle Retail Data Model

Assume that the returned error is ORA-40113: insufficient number of distinct
target values, for 'create_chrn_dt_model.

This error happens when the target column for the training model contains only one
value or no value when it is expecting more than one value.

For example, for the customer churn prediction model, the target column is: dmv_cust_
acct_src.chrn_ind

To troubleshoot this error:

1. Execute a SQL query to check if there are enough values in this column.

Using the customer churn prediction model as an example, issue the following
statement.

select chrn_ind, count(*) from DMV_CUST_ACCT_SRC group by chrn_ind;

The following is a result of the query.

Managing Errors During Oracle Retail Data Model Intra-ETL Execution

4-24 Oracle Retail Data Model Implementation and Operations Guide

CHRN_IND COUNT(*)
-- -----------
0 10000

2. Check whether dwr_cust.prmry_eff_to_dt column has few non-null values.

3. Execute the following statement to refresh the mining source materialized views:

exec pkg_ordm_mining.refresh_mining_source;

Example 4–5 Troubleshooting an ORA-40112 Error for Oracle Retail Data Model

Assume that the returned error is:

ORA-40112:insufficient number of valid data rows, for " create_chrn_dt_model "

For this model, the target column is dmv_cust_acct_src.chrn_ind.

To troubleshoot this error:

1. Execute the following SQL statement:

select count(chrn_ind) from dmv_cust_acct_src;

2. Check to see that the value returned by this query is greater than 0 (zero) and
similar to number of customers. If the number is 0 or too small, check the data in
source tables of mining source materialized view, dmv_cust_acct_src :

DWB_RTL_TRX
DWR_CUST

Example 4–6 Troubleshooting an ORG-11130 Error for Oracle Retail Data Model

Assume that the returned error is ORG-11130:no data found in the collection,
for "create_sentiment_svm_model".

This error occurs when there is not enough data in the source table for customer
sentiment model training: dm_cust_cmnt .

To ensure that some text is loaded for customer sentiment analysis:

1. Issue the following SQL statement:

SELECT cust_key, count(cust_cmmnt)
from dm_cust_cmnt
group by cust_key;

2. Check the number of text comments from the dm_cust_cmnt.

3. If there is not enough data in the dm_cust_cmnt table, check the ETL logic of dm_
cust_intrqacn_cmnt table first, then check data in the base interaction event
tables.

5

Report and Query Customization 5-1

5Report and Query Customization

This chapter provides information about creating reports, queries, and dashboards
against the data in Oracle Retail Data Model warehouse. It contains the following
topics:

■ Reporting Approaches in Oracle Retail Data Model

■ Customizing Oracle Retail Data Model Reports

■ Writing Your Own Queries and Reports

■ Optimizing Star Queries

■ Troubleshooting Oracle Retail Data Model Report Performance

■ Writing As Is and As Was Queries

■ Tutorial: Creating a New Oracle Retail Data Model Dashboard

■ Tutorial: Creating a New Oracle Retail Data Model Report

Reporting Approaches in Oracle Retail Data Model
There are two main approaches to creating reports from data in Oracle Retail Data
Model warehouse:

Relational Reporting
With relational reporting, reports are created against the analytical layer entities using
the fact entities as the center of the star with the reference entities (that is, DWR_ and
DWL_ tables) acting as the dimensions of the star. Typically the fact entities include the
derived and aggregate entities (that is, DWD_ tables and DWA_ objects). When you need
more detailed reports, generate the reports with base tables (DWB_), Reference tables
(DWR_) and lookup tables (DWL_).

The reference tables (that is, DWR_ tables) typically represent dimensions which
contain a business hierarchy and are present in the form of snowflake entities
containing a table for each level of the hierarchy. This allows us to attach the
appropriate set of reference entities for the multiple subject area and fact entities
composed of differing granularity.

For example, you can use the set of tables comprising DWR_SKU_ITEM and DWR_ITEM,
DWR_ITEM_SBC, DWR_ITEM_CLASS, and DWR_ITEM_DEPT tables to query against the
SKU ITEM level Space Utilization entity such as DWD_SPACE_UTLZTN_ITEM_DAY. On
the other hand, you need to use the higher level snowflakes at ITEM level and above
such as DWR_ITEM, DWR_ITEM_SBC, DWR_ITEM_CLASS, and DWR_ITEM_DEPT to
query against the DEPARTMENT level Space Utilization entity such as DWA_SPACE_
UTLZTN_DEPT_DAY.

Customizing Oracle Retail Data Model Reports

5-2 Oracle Retail Data Model Implementation and Operations Guide

The lookup tables (that is tables, with the DWL_ prefix) represent the simpler
dimensions comprising a single level containing a flat list of values.

OLAP Reporting
With OLAP reporting, Oracle OLAP cubes are accessed using SQL against the
dimension and cube (fact) views. Cubes and dimensions are represented using a star
schema design. Dimension views form a constellation around the cube (or fact) view.
The dimension and cube views are relational views with names ending with _VIEW.
Typically, the dimension view used in the reports is named dimension_hierarchy_
VIEW and the cube view is named cube_VIEW.

Unlike the corresponding relational dimension objects stored in DWR_ tables, the
OLAP dimension views contains information relating to the entire dimension
including all the levels of the hierarchy logically partitioned by a level column
(identified as level_name). On a similar note, the cube views also contain the facts
pertaining to the cross-combination of the levels of individual dimensions which are
part of the cube definition. Also the join from the cube view and the dimension views
are based on the dimension keys along with required dimension level filters.

Although the OLAP views are also modeled as a star schema, there are certain unique
features to the OLAP reporting methodology which requires special modeling
techniques in Oracle Business Intelligence Suite Enterprise Edition.

The rest of this chapter explains how to create Oracle Retail Data Model reports. For
examples of Oracle Retail Data Model reports, see:

■ "Writing As Is and As Was Queries" on page 5-6

■ "Tutorial: Creating a New Oracle Retail Data Model Dashboard" on page 5-12

■ "Tutorial: Creating a New Oracle Retail Data Model Report" on page 5-20

■ The reports provided with Oracle Retail Data Model that are documented in
Oracle Retail Data Model Reference.

Customizing Oracle Retail Data Model Reports
Sample reports and dashboards are delivered with Oracle Retail Data Model. These
reports illustrate the analytic capabilities provided with Oracle Retail Data Model --
including the OLAP and data mining capabilities.

The Oracle Retail Data Model reports were developed using Oracle Business
Intelligence Suite Enterprise Edition which is a comprehensive suite of enterprise
business intelligence products that delivers a full range of analysis and reporting
capabilities. Thus, the reports also illustrate the ease with which you can use Oracle
Business Intelligence Suite Enterprise Edition Answers and Dashboard presentation
tools to create useful reports.

See also: The Oracle By Example tutorial, entitled "Using Oracle
OLAP 11g With Oracle BI Enterprise Edition". To access the tutorial,
open the Oracle Learning Library in your browser by following the
instructions in "Oracle Technology Network" on page xii; and, then,
search for the tutorials by name.

See: Oracle Retail Data Model Installation Guide for more information
on installing the reports and deploying the Oracle Retail Data Model
RPD and webcat on the Business Intelligence Suite Enterprise Edition
instance.

Writing Your Own Queries and Reports

Report and Query Customization 5-3

Oracle Business Intelligence Suite Enterprise Edition products are used to display and
customize the predefined sample reports, or new reports can be created:

■ Oracle BI Answers. Provides end user ad hoc capabilities in a pure Web
architecture. You can interact with a logical view of the information, completely
hidden from data structure complexity while simultaneously preventing runaway
queries. You can easily create charts, pivot tables, reports, and visually appealing
dashboards.

■ Oracle BI Interactive Dashboards. Provides any knowledge worker with
intuitive, interactive access to information. You can work with live reports,
prompts, charts, tables, pivot tables, graphics, and tickers, and have full capability
for drilling, navigating, modifying, and interacting with these results.

Writing Your Own Queries and Reports
The ordm_sys schema defines the relational tables and views in Oracle Retail Data
Model. You can use any SQL reporting tool to query and report on these tables and
views.

Oracle Retail Data Model also supports On Line Analytic Processing (OLAP) reporting
using OLAP cubes defined in the ordm_sys schema. You can query and write reports
on OLAP cubes using SQL tools to query the views that are defined for the cubes or
using OLAP tools to directly query the OLAP components.

Example 5–1 Creating a Relational Query for Oracle Retail Data Model

For example, assume that you want to know the total number of hours worked by
each employee for September 2011. To answer this question, you might have to query
the tables described in the following table.

To perform this query, execute the following SQL statement:

SELECT DE.emp_key,DBM.mo_cd,SUM(DEL.hrs_wrkd) AS tot_hrs_wrkd
FROM dwd_emp_lbr DEL, dwr_emp DE, dwr_bsns_mo DBM
WHERE DEL.emp_key = DE.emp_key
AND TO_DATE(DEL.day_key,'YYYYMMDD') BETWEEN DBM.mo_strt_dt AND DBM.mo_end_dt
AND DBM.mo_desc = 'BY 2011 M9'
GROUP BY DE.emp_key, DBM.mo_cd;

See: Oracle Retail Data Model Reference for detailed information on
the sample reports.

See also: "Reporting Approaches in Oracle Retail Data Model" on
page 5-1, "Oracle OLAP Cube Views" on page 3-13, and the discussion
on querying dimensional objects in Oracle OLAP User's Guide.

Entity Name Table Name Description

Employee Labor
Derived

DWD_EMP_LBR Summary of employee labor in a day.

Employee DWR_EMP An individual who works for the retail organization,
accepts direction from the retail store management
and satisfies the statutory criteria requiring that
payroll taxes and benefit contributions be paid by the
retailer.

Business Month DWR_BSNS_MO Months as defined in the Business calendar.

Optimizing Star Queries

5-4 Oracle Retail Data Model Implementation and Operations Guide

The result of this query is:

EMP_KEY MO_CD TOT_HRS_WRKD
1005875 20110905 82
1005479 20110905 46
1005552 20110905 32
1005539 20110905 46
1005813 20110905 44
1005460 20110905 50
1006208 20110905 54
1005829 20110905 56

Optimizing Star Queries
A typical query in the access layer is a join between the fact table and some number of
dimension tables and is often referred to as a star query. In a star query each
dimension table is joined to the fact table using a primary key to foreign key join.
Normally the dimension tables do not join to each other.

Typically, in this kind of query all of the WHERE clause predicates are on the dimension
tables and the fact table. Optimizing this type of query is very straight forward.

To optimize this type of query, do the following:

■ Create a bitmap index on each of the foreign key columns in the fact table or tables

■ Set the initialization parameter STAR_TRANSFORMATION_ENABLED to TRUE.

Using this option enables the optimizer feature for star queries which is off by default
for backward compatibility.

If your environment meets these two criteria, your star queries should use a powerful
optimization technique that rewrites or transforms your SQL called star
transformation. Star transformation executes the query in two phases:

1. Retrieves the necessary rows from the fact table (row set).

2. Joins this row set to the dimension tables.

The rows from the fact table are retrieved by using bitmap joins between the bitmap
indexes on all of the foreign key columns. The end user never needs to know any of
the details of STAR_TRANSFORMATION, as the optimizer automatically chooses STAR_
TRANSFORMATION when it is appropriate.

Example 5–2, "Star Transformation" gives the step by step process to use STAR_
TRANSFORMATION to optimize a star query.

Example 5–2 Star Transformation

A business question that could be asked against the star schema in Figure 5-1, "Star
Schema Diagram" would be "What was the total number of Widgets sold in Nashua
during the month of May 2008?"

1. The original query.

SELECT SUM(DRSRL.qty) tot_Widgets_in_Nashua
FROM dwb_rtl_sl_rtrn_li DRSRL, dwr_cust DC, dwr_sku_item DSI, dwr_day DD
WHERE DRSRL.cust_key = DC.cust_key
AND DRSRL.sku_item_key = DSI.sku_item_key
AND DRSRL.day_key = DD.bsns_day_key
AND DC.city = 'Nashua'
AND DSI.sku_item_name = 'Widgets'
AND DD.bsns_mo_desc = 'BY 2008 M5'

Optimizing Star Queries

Report and Query Customization 5-5

;

As you can see all of the where clause predicates are on the dimension tables and
the fact table (dwb_rtl_sl_rtrn_li) is joined to each of the dimensions using
their foreign key, primary key relationship.

2. Take the following actions:

a. Create a bitmap index on each of the foreign key columns in the fact table or
tables.

b. Set the initialization parameter STAR_TRANSFORMATION_ENABLED to TRUE.

3. The rewritten query. Oracle rewrites and transfers the query to retrieve only the
necessary rows from the fact table using bitmap indexes on the foreign key
columns:

SELECT SUM(DRSRL.qty) tot_Widgets_sld_in_Nashua
FROM dwb_rtl_sl_rtrn_li DRSRL
WHERE DRSRL.cust_key IN (SELECT DC.cust_key FROM dwr_cust DC WHERE DC.city =
'Nashua')
AND DRSRL.sku_item_key IN (SELECT DSI.sku_item_key FROM dwr_sku_item DSI
WHERE DSI.sku_item_name = 'Widgets')
AND DRSRL.day_key IN (SELECT DD.bsns_day_key FROM dwr_day DD WHERE DD.bsns_
mo_desc = 'BY 2008 M5')
;

By rewriting the query in this fashion you can now leverage the strengths of
bitmap indexes. Bitmap indexes provide set based processing within the database,
allowing you to use various fact methods for set operations such as AND, OR,
MINUS, and COUNT. So, you use the bitmap index on day_key to identify the set
of rows in the fact table corresponding to sales in May 2008. In the bitmap the set
of rows are actually represented as a string of 1's and 0's. A similar bitmap is
retrieved for the fact table rows corresponding to the sale of the Widgets and
another is accessed for sales made in Nashua. At this point there are three bitmaps,
each representing a set of rows in the fact table that satisfy an individual
dimension constraint. The three bitmaps are then combined using a bitmap AND
operation and this newly created final bitmap is used to extract the rows from the
fact table needed to evaluate the query.

4. Using the rewritten query, Oracle joins the rows from fact tables to the dimension
tables.

The join back to the dimension tables is normally done using a hash join, but the
Oracle Optimizer selects the most efficient join method depending on the size of
the dimension tables.

The typical execution plan for a star query when STAR_TRANSFORMATION has kicked
in. The execution plan may not look exactly as you expect. There is no join back to the
dwr_cust table after the rows have been successfully retrieved from the dwb_rtl_
sl_rtrn_li table. In the select list, there is not anything actually selected from the
dwr_cust table so the optimizer knows not to bother joining back to that dimension
table. You may also notice that for some queries even if STAR_TRANSFORMATION does
kick in it may not use all of the bitmap indexes on the fact table. The optimizer decides
how many of the bitmap indexes are required to retrieve the necessary rows from the
fact table. If an additional bitmap index would not improve the selectivity, the
optimizer does not use it. The only time you see the dimension table that corresponds
to the excluded bitmap in the execution plan is during the second phase, or the join
back phase.

Troubleshooting Oracle Retail Data Model Report Performance

5-6 Oracle Retail Data Model Implementation and Operations Guide

Troubleshooting Oracle Retail Data Model Report Performance
Take the following actions to identify problems generating a report created using
Oracle Business Intelligence Suite Enterprise Edition:

1. In the (Online) Oracle BI Administrator Tool, select Manage, then Security, then
Users, and then ordm.

Ensure that the value for Logging level is 7.

2. Open the Oracle Retail Data Model Repository, select Manage, and then Cache.

3. In the right-hand pane of the Cache Manager window, select all of the records,
then right-click and select Purge.

4. Run the report or query that you want to track using the SQL log.

5. Open the query log file (NQQuery.log) under OracleBI\server\Log.

The last query SQL is the log of the report you have just run. If an error was
returned in your last accessed report, there is an error at the end of this log.

The following examples illustrate how to use these error messages:

■ Example 5–3, "Troubleshooting a Report: A Table Does Not Exist"

■ Example 5–4, "Troubleshooting a Report: When the Database is Not Connected"

Example 5–3 Troubleshooting a Report: A Table Does Not Exist

Assume the log file shows the following error:

Query Status: Query Failed: [encloser: 17001] Oracle Error code:
942, message: ORA-00942: table or view does not exist.

This error occurs when the physical layer in your Oracle Business Intelligence Suite
Enterprise Edition repository uses a table which actually does not exist in the
Database.

To find out which table has problem:

1. Copy the SQL query to the database environment.

2. Execute the query.

The table which does not exist is marked out by the database client.

Example 5–4 Troubleshooting a Report: When the Database is Not Connected

Assume the log file contains the following error.

Error: Query Status: Query Failed: [nQSError: 17001] Oracle Error
code: 12545, message: ORA-12545: connect failed because target
host or object does not exist.

Meaning: This error occurs when the Database is not connected.

Action: Check connecting information in physical layer and ODBC connection to
ensure that the repository is connecting to the correct database.

Writing As Is and As Was Queries
Two common query techniques are "as is" and "as was" queries:

■ Characteristics of an As Is Query

Writing As Is and As Was Queries

Report and Query Customization 5-7

■ Characteristics of an As Was Query

■ Examples: As Is and As Was Queries

Characteristics of an As Is Query
An As Is query has the following characteristics:

■ The resulting report shows the data as it happened.

■ The snowflake dimension tables are also joined using the surrogate key columns
(that is the primary key and foreign key columns).

■ The fact table is joined with the dimension tables (at leaf level) using the surrogate
key column.

■ Slowly-changing data in the dimensions are joined with their corresponding fact
records and are presented individually.

■ It is possible to add up the components if the different versions share similar
characteristics.

Characteristics of an As Was Query
An As Was query (also known as point-in-time analysis) has the following
characteristics:

■ The resulting report shows the data that would result from freezing the
dimensions and dimension hierarchy at a specific point in time.

■ Each snowflake table is initially filtered by applying a point-in-time date filter
which selects the records or versions which are valid as of the analysis date. This
structure is called the point-in-time version of the snowflake.

■ The filtered snowflake is joined with an unfiltered version of itself by using the
natural key. All of the snowflake attributes are taken from the point-in-time
version alias. The resulting structure is called the composite snowflake.

■ A composite dimension is formed by joining the individual snowflakes on the
surrogate key.

■ The fact table is joined with the composite dimension table at the leaf level using
the surrogate key column.

■ The point-in-time version is super-imposed on all other possible SCD versions of
the same business entity -- both backward as well as forward in time. Joining in
this fashion gives the impression that the dimension is composed of only the
specific point-in-time records.

■ All of the fact components for various versions add up correctly due to the
super-imposition of point-in-time attributes within the dimensions.

Examples: As Is and As Was Queries
Based on the data shown in Data used for the examples illustrates the characteristics of
As Is and As Was queries:

■ Example 5–5, "As Is Query for Sales Split by Item Subclass"

■ Example 5–6, "As Was Query for Sales Split by Item Subclass"

Writing As Is and As Was Queries

5-8 Oracle Retail Data Model Implementation and Operations Guide

Data used for the examples
Assume that the data warehouse has DWR_SKU_ITEM , DWR_ITEM , DWR_ITEM_
SBC and DWB_RTL_SL_RTRN_LI fact tables. As of January 1, 2012, these tables
include the following values.

SKU Item Table

Item Table

Item Subclass Table

Retail Sales Table

Assume that the following event occurred in January 2012:

On January 2, 2012 Apple Tea and Vitamin Water, these two SKUs moved from
subclass Beverages to Health. Consequently, as shown, January 3, 2012, DWR_SKU_

SKU_ITEM_KEY SKU_ITEM_NBR ITEM_KEY SKU_ITEM_NAME EFF_FROM_DT EFF_TO_DT

1 389338009222279 1 Antacid 1/1/2011 12/31/2099

2 41204000420118700 2 Apple Tea 1/1/2011 12/31/2099

3 3632320042915860 3 Vitamin Water 1/1/2011 12/31/2099

4 38465200581121200 4 Mineral Water 1/1/2011 12/31/2099

ITEM_KEY ITEM_NBR SBC_KEY ITEM_NAME EFF_FROM_DT EFF_TO_DT

1 100309620 10 Antacid 1/1/2011 12/31/2099

2 100309700 1 Apple Tea 1/1/2011 12/31/2099

3 100309970 1 Vitamin Water 1/1/2011 12/31/2099

4 100309110 1 Mineral Water 1/1/2011 12/31/2099

SBC_KEY SBC_CD ITEM_CLAS_KEY SBC_NAME EFF_FROM_DT EFF_TO_DT

1 BVGS 1 BEVERAGES 1/1/2011 12/31/2099

10 HLTH 10 HEALTH 1/1/2011 12/31/2099

DAY_KEY SKU_ITEM_KEY SLS_AMT

20111230 1 100

20111230 2 100

20111230 3 100

20111230 4 100

20111231 1 100

20111231 2 100

20111231 3 100

20111231 4 100

Writing As Is and As Was Queries

Report and Query Customization 5-9

ITEM, DWR_ITEM, DWR_ITEM_SBC and DWB_RTL_SL_RTRN_LI tables have new
data.

SKU Item Table

Item Table

Item Subclass Table

Retail Sales Table

SKU_ITEM_KEY SKU_ITEM_NBR ITEM_KEY SKU_ITEM_NAME EFF_FROM_DT EFF_TO_DT

1 389338009222279 1 Antacid 1/1/2011 12/31/2099

2 41204000420118700 2 Apple Tea 1/1/2011 1/1/2012

3 3632320042915860 3 Vitamin Water 1/1/2011 1/1/2012

4 38465200581121200 4 Mineral Water 1/1/2011 12/31/2099

1008 41204000420118700 1008 Apple Tea 1/2/2012 12/31/2099

1009 3632320042915860 1009 Vitamin Water 1/2/2012 12/31/2099

ITEM_KEY ITEM_NBR SBC_KEY ITEM_NAME EFF_FROM_DT EFF_TO_DT

1 100309620 10 Antacid 1/1/2011 12/31/2099

2 100309700 1 Apple Tea 1/1/2011 1/1/2012

3 100309970 1 Vitamin Water 1/1/2011 1/1/2012

4 100309110 1 Mineral Water 1/1/2011 12/31/2099

1008 100309700 10 Apple Tea 1/2/2012 12/31/2099

1009 100309970 10 Vitamin Water 1/2/2012 12/31/2099

SBC_KEY SBC_CD ITEM_CLAS_KEY SBC_NAME EFF_FROM_DT EFF_TO_DT

1 BVGS 1 BEVERAGES 1/1/2011 12/31/2099

10 HLTH 10 HEALTH 1/1/2011 12/31/2099

DAY_KEY SKU_ITEM_KEY SLS_AMT

20111230 1 100

20111230 2 100

20111230 3 100

20111230 4 100

20111231 1 100

20111231 2 100

20111231 3 100

20111231 4 100

Writing As Is and As Was Queries

5-10 Oracle Retail Data Model Implementation and Operations Guide

Assuming the data used for the examples, to show the sales data split by Item
Subclass, the SQL statement in Example 5–5 that joins the sales fact table and the item
dimensions on the SKU_ITEM_KEY surrogate key. Also snowflake tables for Item
dimension DWR_ITEM is joined with DWR_SKU_ITEM by ITEM_KEY and DWR_
ITEM_SBC is joined with DWR_ITEM by SBC_KEY.

Example 5–5 As Is Query for Sales Split by Item Subclass

SELECT SKU.sku_item_name
,SBC.sbc_name
,SUM(SLS_AMT) sls_amt
FROM dwb_rtl_sl_rtrn_li SLS, dwr_sku_item SKU, dwr_item ITEM, dwr_item_sbc SBC
WHERE SLS.sku_item_key = SKU.sku_item_key
AND SKU.item_key = ITEM.item_key
AND ITEM.sbc_key = SBC.sbc_key
GROUP BY SBC.sbc_name, SKU.sku_item_name
ORDER BY SBC.sbc_name, SKU.sku_item_name
;

The result of the query is shown in the table Table 5–1.

Assuming the data used for the examples, issue the SQL statement shown in
Example 5–6 to show the sales data split by subclass using an analysis date of January
1, 2012.

Example 5–6 As Was Query for Sales Split by Item Subclass

SELECT SKU.sku_item_name
,SBC.sbc_name
,SUM(SLS_AMT) sls_amt
FROM dwb_rtl_sl_rtrn_li SLS, dwr_item_sbc SBC,
(SELECT ACT.item_key, PIT.item_nbr, PIT.sbc_key, PIT.item_name
FROM dwr_item ACT INNER JOIN
(SELECT item_key, item_nbr, sbc_key, item_name
FROM dwr_item
WHERE TO_DATE('20120101','YYYYMMDD') BETWEEN eff_from_dt AND eff_to_dt
)PIT

20120102 1 100

20120102 1008 100

20120102 1009 100

20120102 4 100

Table 5–1 As Is Query Result for Sales Split by Item Subclass

SKU_ITEM_NAME SBC_NAME SLS_AMT

Apple Tea BEVERAGES 200

Mineral Water BEVERAGES 300

Vitamin Water BEVERAGES 200

Antacid HEALTH 300

Apple Tea HEALTH 100

Vitamin Water HEALTH 100

Writing As Is and As Was Queries

Report and Query Customization 5-11

ON ACT.item_nbr = PIT.item_nbr
) ITEM,
(SELECT ACT.sku_item_key, PIT.sku_item_nbr, PIT.item_key, PIT.sku_item_name
FROM dwr_sku_item ACT INNER JOIN
(SELECT sku_item_key, sku_item_nbr, item_key, sku_item_name
FROM dwr_sku_item
WHERE TO_DATE('20120101','YYYYMMDD') BETWEEN eff_from_dt AND eff_to_dt
)PIT
ON ACT.sku_item_nbr = PIT.sku_item_nbr
) SKU
WHERE SLS.sku_item_key = SKU.sku_item_key
AND SKU.item_key = ITEM.item_key
AND ITEM.sbc_key = SBC.sbc_key
GROUP BY SBC.sbc_name, SKU.sku_item_name
ORDER BY SBC.sbc_name, SKU.sku_item_name

The results of this query are shown in Table 5–2. Since Apple Tea and Vitamin Water
were under Beverages subclass, the sales amount for these two are accounted under
the Beverages subclass.

Assume instead that you issued the exact same query except that the to_date phrase
you specify was January 3, 2012 rather than January 1, 2012. All sales for these two
products, Apple Tea and Vitamin Water, would be accounted under the Health
subclass.

SELECT SKU.sku_item_name
,SBC.sbc_name
,SUM(SLS_AMT) sls_amt
FROM dwb_rtl_sl_rtrn_li SLS, dwr_item_sbc SBC,
(SELECT ACT.item_key, PIT.item_nbr, PIT.sbc_key, PIT.item_name
FROM dwr_item ACT INNER JOIN
(SELECT item_key, item_nbr, sbc_key, item_name
FROM dwr_item
WHERE TO_DATE('20120103','YYYYMMDD') BETWEEN eff_from_dt AND eff_to_dt
)PIT
ON ACT.item_nbr = PIT.item_nbr
) ITEM,
(SELECT ACT.sku_item_key, PIT.sku_item_nbr, PIT.item_key, PIT.sku_item_name
FROM dwr_sku_item ACT INNER JOIN
(SELECT sku_item_key, sku_item_nbr, item_key, sku_item_name
FROM dwr_sku_item
WHERE TO_DATE('20120103','YYYYMMDD') BETWEEN eff_from_dt AND eff_to_dt
)PIT
ON ACT.sku_item_nbr = PIT.sku_item_nbr
) SKU
WHERE SLS.sku_item_key = SKU.sku_item_key
AND SKU.item_key = ITEM.item_key
AND ITEM.sbc_key = SBC.sbc_key
GROUP BY SBC.sbc_name, SKU.sku_item_name
ORDER BY SBC.sbc_name, SKU.sku_item_name

Table 5–2 As Was Query Result for Sales Split by Item Subclass (Beverages Subclass)

SKU_ITEM_NAME SBC_NAME SLS_AMT

Apple Tea BEVERAGES 300

Mineral Water BEVERAGES 300

Vitamin Water BEVERAGES 300

Antacid HEALTH 300

Tutorial: Creating a New Oracle Retail Data Model Dashboard

5-12 Oracle Retail Data Model Implementation and Operations Guide

;

The result of this query is shown in Table 5–3.

Tutorial: Creating a New Oracle Retail Data Model Dashboard
This tutorial explains how to create a dashboard based on dashboards in the Oracle
Retail Data Model webcat included with the sample Oracle Business Intelligence Suite
Enterprise Edition reports delivered with Oracle Retail Data Model.

In this example, assume that you are creating a dashboard named "Category
Manager", and you put both "Customer Sales Value by Year " and "Bottom N
Customer" into this new dashboard.

To create a dashboard, take the following steps:

1. In a browser, open the login page at http://servername:9704/analytics
where servername is the server on which the webcat is installed.

2. Login with username of ordm, and provide the password.

3. Select New, and then select Dashboard to create an Oracle Business Intelligence
Suite Enterprise Edition dashboard. For example, see Figure 5–1.

Table 5–3 As Was Query Result for Sales Split by Item Subclas (Health Subclass)

SKU_ITEM_NAME SBC_NAME SLS_AMT

Mineral Water BEVERAGES 300

Antacid HEALTH 300

Apple Tea HEALTH 300

Vitamin Water HEALTH 300

See: Oracle Retail Data Model Installation Guide for more information
on installing the sample reports and deploying the Oracle Retail Data
Model RPD and webcat on the Business Intelligence Suite Enterprise
Edition instance.

Tutorial: Creating a New Oracle Retail Data Model Dashboard

Report and Query Customization 5-13

Figure 5–1 New Dashboard Start: BIEE Home

4. Enter a name and description, as shown in Figure 5–2. Select the save location to
save the dashboard to the Dashboards folder, then click OK.

Figure 5–2 New Dashboard: Enter Name

Tutorial: Creating a New Oracle Retail Data Model Dashboard

5-14 Oracle Retail Data Model Implementation and Operations Guide

5. In the Catalog view, expand the Customer RFMP folder, as shown in Figure 5–3.
In the navigator, you can see the Customer Sales Value by Year Report; drag it
from catalog view into the right panel.

Figure 5–3 New Dashboard: Catalog View

6. From the navigator, in the same folder, drag the Bottom N Customer report into
the right pane, as shown in Figure 5–4.

Tutorial: Creating a New Oracle Retail Data Model Dashboard

Report and Query Customization 5-15

Figure 5–4 New Dashboard: Catalog View with New Reports Vertical

7. You can change the layout of this section to organize the two reports, either
horizontal or vertical, as shown in Figure 5–4, and Figure 5–5.

Tutorial: Creating a New Oracle Retail Data Model Dashboard

5-16 Oracle Retail Data Model Implementation and Operations Guide

Figure 5–5 New Dashboard: Catalog View with New Reports Horizontal

8. The page has the default name, "Page1". To change the name, do the following:

a. Select the Dashboard, as shown in Figure 5–6.

Tutorial: Creating a New Oracle Retail Data Model Dashboard

Report and Query Customization 5-17

Figure 5–6 New Dashboard: Select Name for Page

b. In Dashboard Properties window, click Change Name, as shown in Figure 5–7.

Tutorial: Creating a New Oracle Retail Data Model Dashboard

5-18 Oracle Retail Data Model Implementation and Operations Guide

Figure 5–7 New Dashboard: Enter New Page Name

c. Change the name to "Customer Sales Value by Year & Bottom Customer", as
shown in Figure 5–8. Then click OK.

Tutorial: Creating a New Oracle Retail Data Model Dashboard

Report and Query Customization 5-19

Figure 5–8 New Dashboard: Rename Page Dialog

9. Click Save on the top of the dashboard. The new dashboard is shown in
Figure 5–9.

Tutorial: Creating a New Oracle Retail Data Model Report

5-20 Oracle Retail Data Model Implementation and Operations Guide

Figure 5–9 New Dashboard: Display with Two New Reports

Tutorial: Creating a New Oracle Retail Data Model Report
This tutorial explains how to create a report based on the Oracle Retail Data Model
webcat included with the sample Oracle Business Intelligence Suite Enterprise Edition
reports delivered with Oracle Retail Data Model.

In this example, assume that you are creating a report named "Vendor Sales by
Channel" to show sales values by time, channel, and vendor.

To create a report, take the following steps:

Oracle by Example: For more information on creating dashboards
see the "Creating Analyses and Dashboards 11g" OBE tutorial.

To access the tutorial, open the Oracle Learning Library in your
browser by following the instructions in "Oracle Technology Network"
on page xii; and, then, search for the tutorial by name.

See: Oracle Retail Data Model Installation Guide for more information
on installing the sample reports and deploying the Oracle Retail Data
Model RPD and webcat on the Business Intelligence Suite Enterprise
Edition instance.

Tutorial: Creating a New Oracle Retail Data Model Report

Report and Query Customization 5-21

1. In the browser, open the login page at http://servername:9704/analytics
where servername is the server on which the webcat is installed.

2. Login with username of ordm, and provide the password.

3. Select New, and then select Analysis to create an Oracle Business Intelligence
Suite Enterprise Edition report, as shown in Figure 5–10.

Figure 5–10 Analysis Report: Welcome Page with New Menu

4. Select Subject Area, and then select RBIAII to create a relational report, as shown
in Figure 5–11.

Figure 5–11 Analysis Report: Welcome Page with Select Subject Area Menu

5. Drag and drop the dimension and fact columns into the Selected Columns panel,
as shown in Figure 5–12.

Tutorial: Creating a New Oracle Retail Data Model Report

5-22 Oracle Retail Data Model Implementation and Operations Guide

Figure 5–12 Analysis Report: Welcome Page with Selected Columns

6. Select the Results tab to view the report, as shown in Figure 5–13.

Tutorial: Creating a New Oracle Retail Data Model Report

Report and Query Customization 5-23

Figure 5–13 Analysis Report: Results View of Report

7. Select New View to add a chart to the report, as shown in Figure 5–14.

Tutorial: Creating a New Oracle Retail Data Model Report

5-24 Oracle Retail Data Model Implementation and Operations Guide

Figure 5–14 New Report: Create New View

8. Select Save to save this report. The report including the new values is shown in
Figure 5–15.

Tutorial: Creating a New Oracle Retail Data Model Report

Report and Query Customization 5-25

Figure 5–15 New Report: Final View of New Reports

Oracle by Example: For more information on creating a report, see
the "Creating Analyses and Dashboards 11g" OBE tutorial.

To access the tutorial, open the Oracle Learning Library in your
browser by following the instructions in "Oracle Technology Network"
on page xii; and, then, search for the tutorial by name.

Tutorial: Creating a New Oracle Retail Data Model Report

5-26 Oracle Retail Data Model Implementation and Operations Guide

6

Metadata Collection and Reports 6-1

6Metadata Collection and Reports

You use the Oracle Retail Data Model metadata browser generation packages to
generate and update the Oracle Retail Data Model metadata browser.

There are four main tables and other staging tables and views in the metadata
generation package. The tables are: MD_ENTY, MD_PRG, MD_KPI, and MD_REF_
ENTY_KPI; these are the tables that support metadata browser reports.

This chapter includes the following sections:

■ Metadata Collection and Population

■ Metadata Reports and Dashboard

Metadata Collection and Population
Use the following steps to generate Oracle Retail Data Model Logical Data Model
metadata, and use the following sequence to ensure proper metadata collection and
loading.

1. Collect LDM Metadata

In step you extract the Logical Data Model repository metadata from Oracle SQL
Developer Data Modeler (OSDM) into a database schema. Use manual steps to
generate Logical Data Model repository tables in the database with Oracle SQL
Developer Data Modeler.

■ Start Oracle SQL Developer Modeler

■ Open LDM -> File -> Export -> to Report schema.

2. Collect Sample Dashboard Metadata

In this step you extract BIEE dashboard metadata from webcat to csv file.

Use OBIEE catalog manager to open SQL Developer sample report webcat.

Tools -> create Report -> Select type to report on -> select dashboard

Select columns one by one as per the md_dashboard.ldr specified in the meta_data
folder, then save as a csv format file, md_dashboard.csv.

Put this file in the meta_data folder.

Column Sequence:

a. Name

b. Description

c. Path

Metadata Collection and Population

6-2 Oracle Retail Data Model Implementation and Operations Guide

d. Folder

e. Analysis Path

f. Analysis Name

g. Analysis Description

h. Dashboard Page Description

i. Dashboard Page Name

j. Dashboard Page Path

k. Owner

3. Collect Sample Report Metadata: Extract BIEE report metadata from webcat to
csv file.

Use OBIEE catalog manager to open Oracle Retail Data Model sample report
webcat.

■ Tools -> create Report -> Select type to report on -> select Analysis -> select
columns one by one as per the md_dashboard.ldr specified in the meta_data
folder.

■ Save the file as csv format, md_dashboard.csv. Put the file under meta_data
folder

Column Sequence:

a. NAME

b. DESCRIPTION

c. TABLE_NAME

d. COLUMN_NAME

e. FOLDER

f. PATH

g. SUBJECT_AREA

h. FORMULA

4. Collect Sample RPD Metadata

Extract BIEE RPD metadata from RPD to csv file.

Use Administrator Tool to open Oracle Retail Data Model sample report RPD:

■ Tools -> Utilities -> Repository Documentation -> Execute -> select location ->
set xls file name as md_rpd

■ Save as csv format md_rpd.csv and put under meta_data folder.

5. Load Naming Convention Information: Load Oracle Retail Data Model PDM
naming convention information from csv into a staging table.Use sqlloader to load
data from name_conversion.csv into MD_NAME_CONVERSION table. Sqlloader
format file: Name_conversion.ldr

Name_conversion.ldr:
OPTIONS (SKIP=1)
LOAD DATA
INFILE 'name_conversion.csv'
BADFILE 'name_conversion.csv.bad'
DISCARDFILE 'name_conversion.csv.dsc'

Metadata Collection and Population

Metadata Collection and Reports 6-3

truncate
INTO TABLE MD_NAME_CONVERSION
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
TRAILING NULLCOLS
(
ABBREVIATION ,
FULL_NAME
)

6. Load Sample Dashboard Metadata

Load sample dashboard metadata from csv into a staging table.

Use sqlloader to load data from md_dashboard.csv into MD_DASHBOARD table.
Sqlloader format file: md_dashboard.ldr.

Md_dashboard.ldr:

OPTIONS (SKIP=1)
LOAD DATA
INFILE 'md_dashboard.csv'
BADFILE 'md_dashboard.csv.bad'
DISCARDFILE 'md_dashboard.csv.dsc'
truncate
INTO TABLE MD_DASHBOARD
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
TRAILING NULLCOLS
(
NAME char(2000),
DESCRIPTION char(2000),
PATH char(2000),
FOLDER char(2000),
ANALYSIS_PATH char(2000),
ANALYSIS_NAME char(2000),
ANALYSIS_DESCRIPTION char(2000),
DASHBOARD_PAGE_DESCRIPTION char(2000),
DASHBOARD_PAGE_NAME char(2000),
DASHBOARD_PAGE_PATH char(2000),
OWNER char(2000)
)

7. Load Sample Report Metadata

Load sample report metadata from csv into a staging table.

Use sqlloader to load data from md_report.csv into MD_REPORT table. Sqlloader
format file: md_report.ldr.

Md_dashboard.ldr:

OPTIONS (SKIP=1)
LOAD DATA
INFILE 'md_dashboard.csv'
BADFILE 'md_dashboard.csv.bad'
DISCARDFILE 'md_dashboard.csv.dsc'
truncate
INTO TABLE MD_DASHBOARD
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
TRAILING NULLCOLS
(
NAME char(2000),
DESCRIPTION char(2000),

Metadata Collection and Population

6-4 Oracle Retail Data Model Implementation and Operations Guide

PATH char(2000),
FOLDER char(2000),
ANALYSIS_PATH char(2000),
ANALYSIS_NAME char(2000),
ANALYSIS_DESCRIPTION char(2000),
DASHBOARD_PAGE_DESCRIPTION char(2000),
DASHBOARD_PAGE_NAME char(2000),
DASHBOARD_PAGE_PATH char(2000),
OWNER char(2000)
)

8. Load Sample RPD Metadata

Load sample RPD metadata from csv into a staging table.

Use sqlloader to load data from md_rpd.csv into MD_RPD table. Sqlloader format
file: md_rpd.ldr.

Md_rpd.ldr:

OPTIONS (SKIP=0)
LOAD DATA
INFILE 'md_rpd.csv'
BADFILE 'md_rpd.csv.bad'
DISCARDFILE 'md_rpd.csv.dsc'
truncate
INTO TABLE MD_RPD
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
TRAILING NULLCOLS
(
 SUBJECT_AREA
,PRESENTATION_TABLE
,PRESENTATION_COLUMN char(500)
,DESC_PRESENTATION_COLUMN
,BUSINESS_MODEL
,DERIVED_LOGICAL_TABLE
,DERIVED_LOGICAL_COLUMN
,DESC_DERIVED_LOGICAL_COLUMN
,EXPRESSION char(1000)
,LOGICAL_TABLE
,LOGICAL_COLUMN
,DESC_LOGICAL_COLUMN
,LOGICAL_TABLE_SOURCE
,EXPRESSION_1 char(1000)
,INITIALIZATION_BLOCK
,VARIABLE
,DATABASE
,PHYSICAL_CATALOG
,PHYSICAL_SCHEMA
,PHYSICAL_TABLE
,ALIAS
,PHYSICAL_COLUMN
,DESC_PHYSICAL_COLUMN
)

9. Load LDM/PDM Metadata (Table MD_ENTY)

Load LDM/PDM mapping and related information into table MD_ENTY.

For information on this step, see "Load LDM/PDM Metadata (Table MD_ENTY)"
on page 6-5.

Metadata Collection and Population

Metadata Collection and Reports 6-5

10. Load Program (Intra-ETL) Metadata (Table MD_PRG)

Load Intra-ETL program input/output and related information into table MD_
PRG.

For information on this step, see "Load Program (Intra-ETL) Metadata (Table MD_
PRG)" on page 6-6

11. Load Reports and KPI Metadata (Table - MD_KPI and MD_REF_ENTY_KPI)

Load sample report metadata into MD_KPI and load report/PDM/LDM mapping
related information into table MD_REF_ENTY_KPI.

For information on this step see "Load Reports and KPI Metadata (Table MD_KPI
and MD_REF_ENTY_KPI):" on page 6-7.

Load LDM/PDM Metadata (Table MD_ENTY)

Source Tables Required

Staging Tables/Views

Loading MD_ENTY (MD_ENTY_POP.SQL)

GIVE_ABBRV
Type: Function

This database function GIVE_ABBRV provides the abbreviation for a named token
from the table MD_NAME_CONVERSION.

Source Table

MD_NAME_CONVERSION

Columns: ABBREVIATION

Target

Table: MD_OIDM_ATTR_COL_NAME_MAP

Columns: column_name_abbr

MD_DM_ALL_ENT_ATTR
Type: View

This database view provides the description of each entity.

Source Table Name Description

DMRS_ATTRIBUTES Containing attributes of the particular entity

DMRS_ENTITIES Containing entity name with unique id

MD_NAME_CONVERSION Containing full name and abbreviation of the distinct word used in the LDM

Staging Table/View Name Description

MD_OIDM_ATTR_COL_NAME_MAP Used to store abbreviate the column names based on the standard abbreviation used
in the project.

MD_DM_ALL_ENT_ATTR Used to generate and keep the entity description.

Metadata Collection and Population

6-6 Oracle Retail Data Model Implementation and Operations Guide

PL/SQL Program to Update Column Name
Type: PL/SQL Program

This program updates the column name based on the result of function GIVE_ABBRV.

PL/SQL program to insert initial data into MD_OIDM_ATTR_COL_NAM
Type: PL/SQL Program

Provides initial loading for table MD_OIDM_ATTR_COL_NAME_MAP

PL/SQL program to load data into MD_ENTY
Type: PL/SQL Program

Loads data into MD_ENTY from all the staging tables.

Load Program (Intra-ETL) Metadata (Table MD_PRG)

Source Tables Required

Staging Tables/Views

Source Table Target View

DMRS_ENTITIES MD_DM_ALL_ENT_ATTR

Source Tables Target Table

MD_OIDM_ATTR_COL_NAME_MAP

DMRS_ATTRIBUTES

MD_OIDM_ATTR_COL_NAME_MAP

Column: column_name_abbr

Source Tables Target Table

MD_DM_ALL_ENT_ATTR

DMRS_ENTITIES

MD_OIDM_ATTR_COL_NAME_MAP

Source Table Target Table

MD_OIDM_ATTR_COL_NAME_MAP MD_ENTY

Source Table Name Description

USER_DEPENDENCIES This database view describes dependencies between procedures,
packages, functions, package bodies, and triggers owned by the
current user, including dependencies on views created without any
database links.

MD_RPD_RPT This table contains the sample report related information.

Staging Table/View Name Description

MD_INTRA_ETL Used to generate and keep the relational/OLAP ETL program
metadata information.

MD_MINING Used to generate and keep the data mining ETL program
metadata information.

Metadata Collection and Population

Metadata Collection and Reports 6-7

Loading MD_PRG (MD_PRG_POP.SQL, MD_MIN_PRG_POP.SQL)
Program: MD_INTRA_ETL

Type: View

This view extracts information for relational and OLAP Intra-ETL packages. The
structure is the same as MD_PRG.

Program: MD_MINING

Type: View

This view extracts information for the data mining Intra-ETL packages. The structure
of the view same as MD_PRG.

Program: PL/SQL program to load ETL mapping data into MD_PRG.

Type: PL/SQL Program

Load ETL program data into MD_PRG from all the staging views

Program: PL/SQL program insert report data into MD_PRG

Type: PL/SQL Program

Load report data into MD_PRG from report staging table.

Load Reports and KPI Metadata (Table MD_KPI and MD_REF_ENTY_KPI):

Source Tables Required

Source View Target View

USER_DEPENDENCIES MD_INTRA_ETL

Source View Target View

USER_DEPENDENCIES MD_MINING

Source Views Target Table

MD_INTRA_ETL

MD_MINING

MD_PRG

Source Table Target Table

MD_RPD_RPT MD_PRG

Source Table Name Description

MD_RPD This tables stores all the RPD metadata information, it is directly
loaded from md_rpd.csv

MD_REPORT This tables stores all the report (analysis) metadata information, it
is directly loaded from md_report.csv

MD_DASHBOARD This tables stores all the sample report dashboard metadata
information, it's directly loaded from md_dashboard.csv

Metadata Collection and Population

6-8 Oracle Retail Data Model Implementation and Operations Guide

Staging Tables/Views

Loading MD_KPI and MD_REF_ENTY_KPI (SAMPLE_REP_POP.SQL)
Program: PL/SQL program Insert non calculated columns Data Into MD_RPD_
CALC_PHY

Type: PL/SQL Program

This program extracts those base KPIs or non calculated column information and
inserts into MD_RPD_CALC_PHY.

Program: PROCEDURE Proc_DelmValuePopulate2

Type: Procedure

This procedure loads comma separated data to new row of the MD_REPORT1 table.

Program: PL/SQL program to create and perform initial load of data into MD_RPD_
RPT

Type: PL/SQL Program

This program creates and performs initial load of data for the table MD_RPD_RPT.

Program: PL/SQL program to create and initial load data into MD_RPD_RPT_DASH.

Type: PL/SQL Program

This program creates and performs initial load of data for table MD_RPD_RPT_DASH.

Staging Table/View Name Description

MD_RPD_CALC_PHY Stores the missing physical tables and columns for derived
measures. Wrote a query to find out missing Physical tables and
columns for derived measures.

MD_REPORT1 MD_REPORT1 has the same structure of MD_RPT, it is used to
store comma separated tables and columns to the new row, by
that it can directly join with physical tables and columns from
MD_RPD_CALC_PHY.

MD_RPT_DASH Contains all mappings information between RPD and reports.

MD_RPD_RPT_DASH Stores all the mappings information of Report, RPD and
Dashboard.

Source Table Target Table

MD_RPD MD_RPD_CALC_PHY

Source Table Target Table

MD_REPORT MD_REPORT1

Source Tables Target Table

MD_RPD_CALC_PHY

MD_REPORT1

MD_RPD_RPT

Metadata Reports and Dashboard

Metadata Collection and Reports 6-9

Program: PL/SQL program to create and initial load data into MD_RPD_RPT.

Type: PL/SQL Program

This program creates performs initial load of data for table MD_RPD_RPT.

Program: MD_DRVD_KP

Type: View

This view extracts and keeps the information for all the calculated KPIs.

Program: PL/SQL program to create and performs initial load of data into MD_KPI.

Type: PL/SQL Program

This program creates and performs initial load of data for table MD_KPI.

Program: PL/SQL program to create and initial load data into MD_REF_ENTY_KPI.

Type: PL/SQL Program

This program creates and performs the initial load of data for table MD_REF_ENTY_
KPI.

Metadata Reports and Dashboard
To customize the Oracle Retail Data Model reports, you must understand the
dependencies among Oracle Retail Data Model objects, especially how the report KPIs
are mapped to the physical tables and columns.

The "Oracle Retail Data Model Metadata" browser that helps you discover these
dependencies. When you install Oracle Retail Data Model with its sample reports, the
metadata browser is delivered as a sample Dashboard.

Source Tables Target Table

MD_RPD_CALC_PHY

MD_RPT_DASH

MD_RPD_RPT_DASH

MD_RPD_RPT_DASH

Source Tables Target Table

MD_RPD_CALC_PHY

MD_REPORT1

MD_RPD_RPT

Source Table Target Table

MD_RPD_RPT_DASH MD_DRVD_KPI

Source Table Target Table

MD_RPD_RPT_DASH MD_KPI

Source Table Target Table

MD_RPD_RPT_DASHI MD_REF_ENTY_KPI

Metadata Reports and Dashboard

6-10 Oracle Retail Data Model Implementation and Operations Guide

There are four tabs (reports) in the Oracle Retail Data Model Metadata browser:

■ Details: Measure-Entity Tab Business Areas and Measures Attributes and Entities

■ Details: Entity-Measure Tab Entity to Attribute Measures

■ Details Program-Table Tab

■ Details: Table-Program Tab

Details: Measure-Entity Tab Business Areas and Measures Attributes and
Entities
On the Measure-Entity tab the measure descriptions, computational formulas with
physical columns, physical tables, and corresponding entities can be viewed by
Business Area.

To browse the data, select the business area and measure description that you are
interested in.

Report table uses and column used details:

Details: Entity-Measure Tab Entity to Attribute Measures
The Entity-Measure tab displays the measures supported by the entities and how they
are calculated. You can discover information about particular entities and attributes.

For example, take the following steps to learn more about an entity:

1. Select the entity.

2. Click GO.

Report table uses and column used details:

Details Program-Table Tab
The Program-Table tab displays the input and output tables used in the selected
programs.

For example, take the following steps to learn more about intra-ETL mappings:

1. Select the program type (that is, intra-ETL or report) and program name for
showing particular report or intra-ETL information.

2. Select GO.

See: Oracle Retail Data Model Installation Guide for more information
on installing the sample reports and deploying the Oracle Retail Data
Model RPD and webcat on the Business Intelligence Suite Enterprise
Edition instance.

Table Associated Columns

MD_ENTY_VIEW ENTY_NAME1, ATTRBT_NAME

MD_KPI KPI_NAME, KPI_DESC, CMPUT_LOGIC, BSNS_AREA

MD_PRG_VIEW PHY_TAB_NAME

Table Associated Columns

MD_ENTY ENTY_NAME, ATTRBT_NAME

MD_KPI KPI_NAME, CMPUT_LOGIC

Metadata Reports and Dashboard

Metadata Collection and Reports 6-11

Report table uses and column used details:

Details: Table-Program Tab
The Table-Program tab lists the Programs used by a given table and whether that table
is an input or output, or both, of that program. To discover what reports use a
particular table, you must move a particular table from the right pane to the left
(Selected) pane.

For example, to see the reports that use a particular table, take the following steps:

1. In the right pane of the Table-Program tab, select the table.

2. Move the table to the Selected list on the left by clicking on < (left arrow), and click
OK.

3. Select GO.

The reports for the selected table are displayed.

Report table uses and column used details:

Table Associated Columns

MD_PRG PRG_TYP, PRG_NAME, PHY_TAB_NAME, SB_PRG_TYP, PRG_
MODEL, SB_PRG_DESC

Table Associated Columns

MD_PRG PRG_NAME, PHY_TAB_NAME, SB_PRG_TYP, PRG_MODEL,
SB_PRG_DESC

Metadata Reports and Dashboard

6-12 Oracle Retail Data Model Implementation and Operations Guide

7

Multi-Currency Support and Configuration 7-1

7Multi-Currency Support and Configuration

This chapter includes the following topics:

■ Multi-Currency Overview

■ Multi-Currency Data Field Naming Conventions

■ Multi-Currency Data Movement

■ Currency Data Flow

■ Currency DWC_CRNCY_CONF Table

Multi-Currency Overview
Oracle Retail Data Model supports four currency types:

■ Base

■ Reporting1

■ Reporting2

■ Reporting3

You configure and setup these currencies in the DWL_CRNCY_CONF table.

Base Currency is the Standard or default currency for the Oracle Retail Data Model
installation. The currencies: Reporting1/2/3 are the three available Reporting
Currencies available through the Oracle Retail Data Model Analytical Layer.

In addition, Oracle Retail Data Model supports Local (Lcl) and Transactional (Txn)
currencies to store other aspects of the business. These currencies need to be stored in
the table DWL_CRNCY. It is expected that a full set of currencies would be defined in this
table. This table contains the Oracle Retail Data Model Base and Reporting1/2/3
currencies as well as any other currencies which are used by the Retailer. For example,
if the Retailer has operations in ten countries with ten different currencies and if the
Base and Reporting1/2/3 currencies are a subset of these ten currencies, then you
need to configure the four mandatory currencies in DWL_CRNCY_CONF and also setup the
ten currencies in the DWL_CRNCY table (including the four mandatory and the six
additional currencies).

The exchange rates, calculated with respect to the Base currency, should be stored in
table DWB_EXCHANG_RATE_CRNCY_DAY. You populate this table for enabling currency
conversions during Intra-ETL process, from any of the ten defined transaction
currencies to the four mandatory currencies. This table can also be used for
dynamically converting Base currency figures to any other currency within the
Reporting Layer.

Multi-Currency Data Field Naming Conventions

7-2 Oracle Retail Data Model Implementation and Operations Guide

The Intra-ETL performs currency conversions at the Base Layer and populates the
Base, Reporting 1/2/3 Currencies in respective AMT (amount) columns in the
Analytical Layer (Derived/Aggregate).

From a Reporting perspective, certain reports can be built which are enabled for
multi-currency analysis. Reports enabled for multi-currency analysis can show a drop
down containing Base or one of the three Reporting Currencies and any other currency
available in the DWL_CRNCY table. Reports delivered in Base and Reporting 1/2/3
currencies are available in a pre-calculated mode. The Reports (requests) do not need
to perform any conversions while requesting a currency from within this group. For
any other currency, the reports will need to perform currency conversion dynamically
and the converted results would be displayed in the report (performance will be worse
when compared to a report request involving a mandatory currency).

Multi-Currency Data Field Naming Conventions
The naming conventions for the various currency related fields in Oracle Retail Data
Model model are as follows:

■ Base Currency: *_AMT: Represents the Base/Standard currency amount for
Oracle Retail Data Model.

■ Local Currency: *_AMT_LCL: Represents the local currency amount for an
organization. This column can be summed / added up to organization level of Org
Hierarchy. The local currency is defined in the Organization in field DWR_ORG_
BSNS_UNIT. PRMRY_CRNCY_ISO_CD.

■ Transaction Currency: *_AMT_TXN: Represents the transactional amount coming
from source into this column. As a transaction can occur in many currencies, you
need to store the currency code along with the Transaction record details. The
column TXN_CRNCY_CD in the base fact table stores the transactional currency
code.

■ Reporting Currency1: *_AMT_RPT: This column contains the amount in
Reporting Currency 1. This currency code is as configured/set up in table DWC_
CRNCY_CONF. This is the value in column CRNCY_CD_VAL corresponding to
CRNCY_CD_TYP value GLBL_CRNCY_RPT_CD.

■ Reporting Currency2: *_AMT_RPT2: This column contains the amount in
Reporting Currency 2. This currency code is as configured/set up in table DWC_
CRNCY_CONF. This is the value in column CRNCY_CD_VAL corresponding to
CRNCY_CD_TYP value GLBL_CRNCY_RPT2_CD.

■ Reporting Currency3: *_AMT_RPT3: This column contains the amount in
Reporting Currency 3. This currency code is as configured/set up in table DWC_
CRNCY_CONF. This is the value in column CRNCY_CD_VAL corresponding to
CRNCY_CD_TYP value GLBL_CRNCY_RPT3_CD.

Note: Most of the currency conversion reports (especially the
non-mandatory currencies) are relational in nature. They would be
built to run against the relational source tables in Oracle Retail Data
Model. The OLAP component as well as OLAP Reports can support
only the mandatory Base and Reporting 1/2/3 currencies.

Multi-Currency Data Movement

Multi-Currency Support and Configuration 7-3

Multi-Currency Data Movement
Oracle Retail Data Model obtains the transaction amount and the currency information
from the source system and loads this information into interface tables. The
transaction and currency data movement occurs as follows:

■ Movement from Interface to Base Tables

■ Movement from Base to Derived Tables

■ Movement from Derived to Aggregate Tables

Movement from Interface to Base Tables
The movement from Interface to Base tables occurs as follows:

■ The value of the *_AMT column is calculated based on the currency rate and the
rate is picked up from the table DWB_EXCHNG_RATE_CRNCY_DAY.

■ The value of the *_AMT_LCL column is calculated based on the currency rate and
the rate is picked up from the table DWB_EXCHNG_RATE_CRNCY_DAY.

■ The value of the *_AMT_TXN column is the same as the transaction amount and the
corresponding currency code is placed in the new column.

■ The value of the *_AMT_RPT column is calculated based on currency rate and the
rate is picked up from the table DWB_EXCHNG_RATE_CRNCY_DAY.

■ The value of the *_AMT_RPT2 column is calculated based on the currency rate and
the rate is picked up from the table DWB_EXCHNG_RATE_CRNCY_DAY.

■ The value of the *_AMT_RPT3 column is calculated based on the currency rate and
the rate is picked up from the table DWB_EXCHNG_RATE_CRNCY_DAY.

Handling Currency at the Base Level
The Interface input file should have the Txn_Cd of the record being loaded. The
transactions are converted into Base crncy and loaded in _AMT columns in the DWB_*
table. The original (txn) value is loaded into the *_AMT_TXN column in DWB_ tables.
Also the _AMT_RPT/2/3 columns contain the default Reporting currency values
(converted). The column TXN_CRNCY_CD indicates the TXN currency.

Movement from Base to Derived Tables
The movement from Base to derived tables occurs as follows:

■ It is not possible to sum up the values in the *_AMT_TXN columns from the DWB
table to the DWD table as the DWD record can encompass many transactional
currencies. Thus, the *_AMT_TXN column is not present in the Derived Table.

■ The *_AMT_LCL in DWD table could be summed up at Business Unit level from
corresponding column in DWB. If Derived table is at higher level, then this
column should not be present in the Derived table.

■ The *_AMT column in DWD table would be summed from the corresponding
column in DWB table.

■ The *_AMT_RPT column in DWD table would be summed from the corresponding
column in DWB table.

■ The *_AMT_RPT2 column in DWD table would be summed from the corresponding
column in DWB table.

Currency Data Flow

7-4 Oracle Retail Data Model Implementation and Operations Guide

■ The *_AMT_RPT3 column in DWD table would be summed from the corresponding
column in DWB table.

Movement from Derived to Aggregate Tables
The movement from derived to aggregate tables occurs as follows:

■ The *_AMT_LCL in DWA table could be summed up at Business Unit level from
corresponding column in DWB/DWD. If Aggregate table is at higher level, then
this column should not be present in the Aggregate table.

■ The *_AMT column in DWA table would be summed up from corresponding
column in DWB/DWD table.

■ The *_AMT_RPT column in DWA table would be summed up from corresponding
column in DWB/DWD table.

■ The *_AMT_RPT2 column in DWA table would be summed up from corresponding
column in DWB/DWD table.

■ The *_AMT_RPT3 column in DWA table would be summed from corresponding
column in DWB/DWD table.

Handling Data Movement from Base to Derived and Aggregate Layers
Base information can be summed up and loaded into respective columns in Derived
table. Derived table will contain the _AMT (Base) and _AMT_RPT, _AMT_RPT2/3 for
RPT1/2/3 currencies. The _AMT_TXN will not be present in DWD table as it does not
apply (multiple Txn currencies cannot be rolled up into single value).

Similarly Derived information is summed up and loaded into DWA entities.

Currency Data Flow
Figure 7–1 shows the data flow showing the movement of currency information
through the layers of Oracle Retail Data Model.

Figure 7–1 Currency and Transaction Amount Data Flow in Oracle Retail Data Model

Currency DWC_CRNCY_CONF Table
Table 7–1 shows the currency configuration table DWC_CRNCY_CONF details. This table
stores the Base Currency and the three reporting currencies.

Currency DWC_CRNCY_CONF Table

Multi-Currency Support and Configuration 7-5

The information in the columns shown in Table 7–1 and should be set up during
Oracle Retail Data Model installation and should not be modified or updated
subsequently.

For example, the currency configuration table DWC_CRNCY_CONF entries suitable for a
customer with a base currency GBP and requires reporting in three currencies: FRC,
USD and EUR is shown in Table 7–2.

Use the table DWB_EXCHNG_RATE_CRNCY_DAY to store the exchange rates for currency
conversion.

The table DWL_CRNCY stores all the currencies required by Oracle Retail Data Model.
This table should contain the four mandatory configuration currencies as defined in
DWC_CRNCY_CONF table. This table must also contain any additional currencies which
may be used as Transactional or Local currencies (Transactions) or as additional
Reporting currencies. Certain Reports can be built which perform currency conversion
dynamically and display results in terms of these additional Reporting Currencies.

Table 7–1 DWC_CRNCY_CONF Table Details

Column Name Data Type Nullable Remarks

CRNCY_CD_TYP VARCHAR2 (30) No Types of Currency Codes. Possible values:

GLBL_CRNCY_RPT_CD

GLBL_CRNCY_RPT2_CD

GLBL_CRNCY_RPT3_CD

BASE_CRNCY_CD

This is the PK column for this table

CRNCY_CD_VAL VARCHAR2 (30) No Value of corresponding Currency code like USD, GBP,
INR, and so on

WID NUMBER(30) No System field

Table 7–2 DWC_CRNCY_CONF Sample Values

CRNCY_CD_TYP CRNCY_CD_VAL WID

BASE_CRNCY_CD GBP 1

GLBL_CRNCY_RPT_CD FRC 1

GLBL_CRNCY_RPT2_CD USD 1

GLBL_CRNCY_RPT3_CD EUR 1

Currency DWC_CRNCY_CONF Table

7-6 Oracle Retail Data Model Implementation and Operations Guide

A

Sizing and Configuring an Oracle Retail Data Model Warehouse A-1

ASizing and Configuring an Oracle Retail Data
Model Warehouse

This appendix provides information about sizing and configuring an Oracle Retail
Data Model warehouse. It contains the following topics:

■ Sizing an Oracle Retail Data Model Warehouse

■ Configuring a Balanced System for Oracle Retail Data Model

Sizing an Oracle Retail Data Model Warehouse
Businesses now demand more information sooner and are delivering analytics from
their Enterprise Data Warehouse (EDW) to an ever-widening set of users and
applications. To keep up with this increase in demand the EDW must now be near
real-time and be highly available. Regardless of the design or implementation of a data
warehouse the initial key to good performance lies in the hardware configuration
used. This has never been more evident than with the recent increase in the number of
data warehouse appliances in the market.

But how do you go about sizing such a system? You must first understand how much
throughput capacity is required for your system and how much throughput each
individual CPU or core in your configuration can drive, thus the number one task is to
calculate the database space requirement in your data warehouse.

There are two data volume estimate resources in a data warehouse environment:

■ The estimated raw data extract from source systems. This estimate affects the ETL
system configuration and the staging layer database space in the data warehouse
system. Because this value is determined by your specific transactional systems,
you must calculate this information yourself.

■ The space needed for data stored to support the objects defined in the default
Oracle Retail Data Model schema. This appendix provides information you can
use to make this calculation.

Calculation Factors When Making a Data Volume Calculation for an Oracle Retail
Data Model Warehouse
Consider the following calculation factors when making a data volume calculation:

■ Calculates data unit volume within different type:

■ Reference and lookup tables data. Assume this data is permanently stored.

■ Base tables data (transaction data). Assume that this data is stored within its life
cycle.

Sizing an Oracle Retail Data Model Warehouse

A-2 Oracle Retail Data Model Implementation and Operations Guide

■ Star schema (derived and summary). Assume that this data is stored within its life
cycle.

■ Calculate each type of data retention.

■ Define how many months or years of each type of tables to retain.

■ Calculate data growth.

■ Assume that annual growth rate: applies to both transaction and reference data
and data in the star schema.

■ Assume that annual change rate applies only to reference data.

■ Calculate Staging Area data requirements, if proposed.

■ Calculate data volume for indexes, temporary tables, and transaction logs.

■ Calculate the space requirement for business intelligence tools, such as cubes, and
data mining.

■ Consider the redo log and Oracle ASM space requirement.

■ Consider the RAID architecture [RAID 1, 0+1, 5]

■ Consider the backup strategy.

■ Consider the compress factor if applied.

■ Consider the OS and file system disk space requirements.

Formula to Determine Minimum Disk Space Requirements for an Oracle Retail Data
Model Warehouse
Use the following formula, based on the factors outlined in "Calculation Factors When
Making a Data Volume Calculation for an Oracle Retail Data Model Warehouse" on
page A-1, to determine the minimum disk space requirements for an Oracle Retail
Data Model warehouse.

Disk Space Minimum Requirements = Raw data size * Database space
factor * (1+GrthperY)nY*OS and File system factor * Compress
Factor * Storage Redundant factor

where:

■ Raw data size = (reference and lookup data per year +
base/transaction data per year + derived and summary data per
year +staging data +other data(OLAP/Data Mining))

■ Database space factor = Indexes + Temporary Tables + Logs]

■ GrthperY = growth rate per year

■ OS and File system factor is the install and configuration and maintain
space for OS and DB

■ Redundant factor= ASM disk space and RAID factor. [RAID 1=2,
RAID 5=1.25 or 1.33]

■ Compress factor depends how you apply the compress function. If you are
executing on an Oracle Exadata Database machine, it has a huge savings in disk
space by using compression.

Tip: Multiply ETL volume by day by number of days held for
problem resolution and re-run of transform with new extract from
source systems.

Configuring a Balanced System for Oracle Retail Data Model

Sizing and Configuring an Oracle Retail Data Model Warehouse A-3

Configuring a Balanced System for Oracle Retail Data Model
Many data warehouse operations are based upon large table scans and other
I/O-intensive operations, which perform vast quantities of random I/Os. To achieve
optimal performance the hardware configuration must be sized end to end to sustain
this level of throughput. This type of hardware configuration is called a balanced
system. In a balanced system all components - from the CPU to the disks - are
orchestrated to work together to guarantee the maximum possible I/O throughput.
I/O performance is always a key consideration for data warehouse designers and
administrators. The typical workload in a data warehouse is especially I/O intensive,
with operations such as large data loads and index builds, creation of materialized
views, and queries over large volumes of data. Design the underlying I/O system for a
data warehouse to meet these heavy requirements.

To create a balanced system, answer the following questions:

■ How many CPUs are required? What speed is required?

■ What amount of memory is required? Data warehouses do not have the same
memory requirements as mission-critical transactional applications?

■ How many I/O bandwidth components are required? What is the desired I/O
speed?

Each component must be able to provide sufficient I/O bandwidth to ensure a
well-balanced I/O system.

The following topics provide more information about configuring a balanced system
for Oracle Retail Data Model:

■ Maintaining High Throughput in an Oracle Retail Data Model Warehouse

■ Configuring I/O in an Oracle Retail Data Model for Bandwidth not Capacity

■ Planning for Growth of Your Oracle Retail Data Model

■ Testing the I/O System Before Building the Oracle Retail Data Model Warehouse

■ Balanced Hardware Configuration Guidelines for Oracle Retail Data Model

Maintaining High Throughput in an Oracle Retail Data Model Warehouse
The hardware configuration and data throughput requirements for a data warehouse
are unique mainly because of the sheer size and volume of data. Before you begin
sizing the hardware configuration for your data warehouse, estimate the highest
throughput requirement to determine whether current or proposed hardware
configuration can deliver the necessary performance. When estimating throughput,
use the following criteria:

■ The amount of data accessed by queries during peak time, and the acceptable
response time

■ The amount of data that is loaded within a window of time

Configuring I/O in an Oracle Retail Data Model for Bandwidth not Capacity
Based on the data volume calculated and the highest throughput requirement, you can
estimate the I/O throughput along with back-end ETL process and front end business
intelligence applications by time unit. Typically, a value of approximately 200MB per
second I/O throughput per core is a good planning number for designing a balanced
system. All subsequent critical components on the I/O path - the Host Bus Adapters,

Configuring a Balanced System for Oracle Retail Data Model

A-4 Oracle Retail Data Model Implementation and Operations Guide

fiber channel connections, the switch, the controller, and the disks - have to be sized
appropriately.

When running a data warehouse on an Oracle Real Application Cluster (Oracle RAC)
it is just as important to size the cluster interconnect with the same care and caution
you would use for the I/O subsystem throughput.

When configuring the storage subsystem for a data warehouse, it should be simple,
efficient, highly available and very scalable. An easy way to achieve this is to apply the
S.A.M.E. methodology (Stripe and Mirror Everything). S.A.M.E. can be implemented
at the hardware level or by using Oracle ASM (Automatic Storage Management) or by
using a combination of both. There are many variables in sizing the I/O systems, but
one basic rule of thumb is that the data warehouse system has multiple disks for each
CPU (at least two disks for each CPU at a bare minimum) to achieve optimal
performance.

Planning for Growth of Your Oracle Retail Data Model
A data warehouse designer plans for future growth of a data warehouse. There are
several approaches to handling the growth in a system, and the key consideration is to
be able to grow the I/O system without compromising on the I/O bandwidth. You
cannot, for example, add four disks to an existing system of 20 disks, and grow the
database by adding a new tablespace striped across only the four new disks. A better
solution would be to add new tablespaces striped across all 24 disks, and over time
also convert the existing tablespaces striped across 20 disks to be striped across all 24
disks.

Testing the I/O System Before Building the Oracle Retail Data Model Warehouse
When creating a data warehouse on a new system, test the I/O bandwidth before
creating all of the database data files to validate that the expected I/O levels are being
achieved. On most operating systems, you can perform the test using simple scripts to
measure the performance of reading and writing large test files.

Balanced Hardware Configuration Guidelines for Oracle Retail Data Model
You can reference the follow tips for a balanced hardware configuration:

■ Total throughput = #cores X 100-200MB (depends on the chip set)

■ Total host bus adaptor (HBA) throughput = Total core throughput

■ Use one disk controller per HBA port (throughput capacity must be equal).

■ Switches must have the capacity as HBAs and disk controllers.

■ Use a maximum of ten physical disk per controller (that is, use smaller drives: 146
or 300 GB).

■ Use a minimum of 4 GB of memory per core (8 GB if using compress).

■ Interconnect bandwidth equals I/O bandwidth (InfiniBand).

Oracle now provides the Oracle Database Machine, Exadata which combines
industry-standard hardware from Oracle, Oracle Database 11g Release 2, and Oracle
Exadata Storage Server Software to create a faster, more versatile database machine.

Note: If total core throughput is 1.6 GB, you need four 4 Gbit HBAs.

Configuring a Balanced System for Oracle Retail Data Model

Sizing and Configuring an Oracle Retail Data Model Warehouse A-5

It's a completely scalable and fault tolerant package for all data management,
especially for data warehousing.

Oracle also has a series of Optimized Warehouse Reference configurations that help
customers take the risk out of designing and deploying Oracle data warehouses. Using
extensive field experience and technical knowledge, Oracle and its hardware partners
have developed a choice of data warehouse reference configurations that can support
various sizes, user populations and workloads. These configurations are fast, reliable
and can easily scale from 500 GB to over 100 TB on single and clustered servers to
support tens to thousands of users.

Configuring a Balanced System for Oracle Retail Data Model

A-6 Oracle Retail Data Model Implementation and Operations Guide

Index-1

Index

A
access layer, 2-2

customizing, 3-1
Oracle Retail Data Model, 2-3, 3-1

As Is reports, 5-7
As Was reports, 5-7

C
compression

in Oracle Retail Data Model, 2-9
materialized views, 3-24

configuring Oracle Retail Data Model
warehouse, A-3

conventions
when customizing physical model, 2-4

cubes
adding materialized view capabilities to, 3-14
changing the dimensions of, 3-17
changing the measures of, 3-17
customizing, 3-15
data maintenance methods, 3-18
forecast, 3-17
in Oracle Retail Data Model, 3-15, 3-16
partitioning, 3-17

customizing
access layer, 3-1
cubes, 3-15
Oracle Retail Data Model, 1-3
physical data model, 2-1

D
dashboards, Oracle Retail Data Model, 5-2, 5-12
data governance committee, responsibilities of, 1-5
data mining models

customizing, 3-2
derived tables

in Oracle Retail Data Model, 3-1
dimensional components, Oracle Retail Data

Model, 3-9

E
error handling

during intra-ETL execution, 4-20

ETL for Oracle Retail Data Model, 4-1

F
fit-gap analysis for Oracle Retail Data Model, 1-10
forecast cube in Oracle Retail Data Model, 3-17
foundation layer

defined, 2-2
Oracle Retail Data Model, 2-3

foundation layer of Oracle Retail Data Model
common change scenarios, 2-6

H
HCC, 2-10
hybrid columnar compression

and Oracle Retail Data Model, 2-10

I
implementers of Oracle Retail Data Model

prerequisite knowledge, 1-4
implementing

Oracle Retail Data Model, 1-3
indexes

in Oracle Retail Data Model, 2-11
materialized views, 3-22
partitioning, 2-12

integrity constraints
in Oracle Retail Data Model, 2-11

intra-ETL
managing errors, 4-20
monitoring execution of, 4-20
Oracle Retail Data Model, 4-1
recovery, 4-21
troubleshooting, 4-21

intra-ETL, Oracle Retail Data Model
executing, 4-17

J
join performance, improving, 2-13

K
keys, surrogate

Index-2

in Oracle Retail Data Model, 2-10

L
loading Oracle Retail Data Model data, 4-14

M
materialized views

compressing, 3-24
in Oracle Retail Data Model, 3-19
indexing, 3-22
partition change tracking, 3-23
partitioning, 3-22
refresh options

refreshing
materialized views, 3-20

Metadata Dependency Manager
with Oracle Retail Data Model, 1-9

metadata management
repository, 1-7, 6-9
with Oracle Retail Data Model, 1-6

metadata repository, 1-7
browsing, 1-7, 6-9
with Oracle Retail Data Model, 1-7, 6-9

N
naming conventions

for physical model of Oracle Retail Data
Model, 2-4

O
Oracle data mining models

Oracle Retail Data Model, 3-2
Oracle Retail Data Model

access layer, 2-3, 3-1
components of, 1-2
customizing, 1-3
customizing physical model, 2-1, 2-3, 2-4, 2-8
dashboards, 5-2
data governance, 1-5
described, 1-1
dimensional components, 3-9
ETL, 4-1
fit-gap analysis, 1-10
foundation layer, 2-3
implementing, 1-3
intra-ETL, 4-1
loading, 4-14
Metadata Dependency Manager, 1-9
metadata management, 1-6
metadata repository, 1-7, 6-9
Oracle products used by, 1-2
Oracle Warehouse Builder, using with, 1-9
physical layers of, 2-2
pre-implementation tasks, 1-4
querying, 5-3
refreshing data, 4-18

reporting, 5-1, 5-3
sample reports, 5-2
source-ETL, 4-1, 4-2, 4-4, 4-5
staging layer, 2-2
tablespaces, design recommendations, 2-8

Oracle Retail Data Model implementers
prerequisite knowledge for, 1-4

Oracle Retail Data Model warehouse
configuring, A-3
sizing, A-1

Oracle Warehouse Builder
with Oracle Retail Data Model, 1-9

P
parallel execution

enabling for a session, 2-16
enabling for DML operations, 2-16
in Oracle Retail Data Model, 2-14

partition change tracking, 3-23
partition exchange load, 4-8
partitioned indexes in Oracle Retail Data

Model, 2-11
partitioning

cubes, 3-17
for join performance, 2-13
for manageability, 2-13
for source-ETL, 4-8
indexes, 2-12
materialized views, 3-22
tables, 2-12

partitions, changing, 2-8
physical model of Oracle Retail Data Model

characteristics of, 2-1, 2-3, 2-4
customizing, 2-4
general recommendations for, 2-8

Q
querying Oracle Retail Data Model, 5-3

R
refreshing

Oracle Retail Data Warehouse, 4-18
reporting

Oracle Retail Data Model, 5-1, 5-3
reports

approaches to, 5-1
As Is, 5-7
As Was, 5-7
troubleshooting performance, 5-6

reports, Oracle Retail Data Model
creating new, 5-20

S
sample reports

customizing, 5-2
sizing

Oracle Retail Data Model warehouse, A-1

Index-3

source-ETL
exception handling, 4-5
jobs control, 4-5
loading considerations, 4-6
Oracle Retail Data Model, 4-1, 4-2, 4-4, 4-5, 4-6
parallel direct path load, 4-8
partitioning for, 4-8
workflow, 4-5

staging layer, 2-1
Oracle Retail Data Model, 2-2

star queries, optimizing, 5-4
surrogate keys

in Oracle Retail Data Model, 2-10

T
tables

compressing, 2-9
derived, 3-1
partitioning, 2-12

tablespace in Oracle Retail Data Model, 2-8

Index-4

	Contents
	List of Examples
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Related Oracle Resources
	Conventions

	1 Introduction to Oracle Retail Data Model Customization
	What is the Oracle Retail Data Model?
	Components of the Oracle Retail Data Model
	Oracle Products That Make Up Oracle Retail Data Model

	Steps for Implementing an Oracle Retail Data Model Warehouse
	Before You Begin Customizing the Oracle Retail Data Model
	Prerequisite Knowledge for Implementors
	Responsibilities of a Data Warehouse Governance Committee

	Managing Metadata for Oracle Retail Data Model
	Metadata Categories and Standards
	Working with a Metadata Repository
	Browsing the Metadata Repository Supplied With Oracle Retail Data Model
	Using the Metadata Generation Packages
	Using Oracle Warehouse Builder with the Oracle Retail Data Model

	Performing Fit-Gap Analysis for Oracle Retail Data Model

	2 Physical Model Customization
	Characteristics of the Default Physical Model
	Customizing the Oracle Retail Data Model Physical Model
	Questions to Answer Before You Customize the Physical Model
	Conventions When Customizing the Physical Model

	Foundation Layer Customization
	Common Change Scenarios When Customizing the Foundation Layer of Oracle Retail Data Model
	Example of Changing the Foundation Layer of the Oracle Retail Data Model

	General Recommendations When Designing Physical Structures
	Tablespaces in Oracle Retail Data Model
	Data Compression in Oracle Retail Data Model
	Types of Data Compression Available
	Basic or Standard Compression
	OLTP Compression
	Hybrid Columnar Compression (HCC)

	Surrogate Keys in the Physical Model
	Integrity Constraints in Oracle Retail Data Model
	Indexes and Partitioned Indexes in Oracle Retail Data Model
	Partitioned Tables in Oracle Retail Data Model
	Partitioning the Oracle Retail Data Model for Manageability
	Partitioning the Oracle Retail Data Model for Easier Data Access
	Partitioning the Oracle Retail Data Model for Join Performance

	Parallel Execution in Oracle Retail Data Model
	Enabling Parallel Execution for a Session
	Enabling Parallel Execution of DML Operations
	Enabling Parallel Execution at the Table Level

	3 Access Layer Customization
	Introduction to Customizing the Access Layer of Oracle Retail Data Model
	Derived Tables in the Oracle Retail Data Model
	Creating New Derived Tables for Calculated Data
	Customizing Oracle Retail Data Model Data Mining Models
	Creating a New Data Mining Model for Oracle Retail Data Model
	Modifying Oracle Retail Data Model Data Mining Models
	Tutorial: Customizing the Customer Life Time Value Prediction Data Mining Model
	Tutorial Prerequisites
	Preparing Your Environment
	Generating the Model
	Checking the Result

	Dimensional Components in the Oracle Retail Data Model
	Characteristics of a Dimensional Model
	Characteristics of Relational Star and Snowflake Tables
	Declaring Relational Dimension Tables
	Validating Relational Dimension Tables

	Characteristics of the OLAP Dimensional Model
	Oracle OLAP Cube Views
	Cube Materialized Views

	Characteristics of the OLAP Cubes in Oracle Retail Data Model
	Defining New Oracle OLAP Cubes for Oracle Retail Data Model
	Changing an Oracle OLAP Cube in Oracle Retail Data Model
	Creating a Forecast Cube for Oracle Retail Data Model
	Choosing a Cube Partitioning Strategy for Oracle Retail Data Model
	Choosing a Cube Data Maintenance Method for Oracle Retail Data Model

	Materialized Views in the Oracle Retail Data Model
	Types of Materialized Views and Refresh options
	Refresh Options for Materialized Views with Aggregates
	Refresh Options for Materialized Views Containing Only Joins
	Refresh Options for Nested Materialized Views

	Choosing Indexes for Materialized Views
	Partitioning and Materialized Views
	Compressing Materialized Views

	4 ETL Implementation and Customization
	The Role of ETL in the Oracle Retail Data Model
	Creating Source-ETL for Oracle Retail Data Model
	Source-ETL Design Considerations
	ETL Architecture for Oracle Retail Data Model Source-ETL
	Creating a Source to Target Mapping Document for the Source-ETL
	Designing a Plan for Rectifying Source-ETL Data Quality Problems
	Designing Source-ETL Workflow and Jobs Control
	Designing Source-ETL Exception Handling
	Writing Source-ETL that Loads Efficiently
	Using a Staging Area for Flat Files
	Preparing Raw Data Files for Source-ETL
	Source-ETL Data Loading Options
	Parallel Direct Path Load Source-ETL
	Partition Exchange Load for Oracle Retail Data Model Source-ETL

	Customizing Intra-ETL for the Oracle Retail Data Model
	ORDM_DERIVED_FLW
	ORDM_AGG_N_DEP_FLW
	ORDM_AGG_DEP_FLW
	OLAP_MAP Mapping Flow
	ORDM_MNNG_FLW

	Performing an Initial Load of an Oracle Retail Data Model Warehouse
	Executing the Default Oracle Retail Data Model Intra-ETL
	Executing the ORDM_INTRA_ETL_FLW Workflow from Oracle Warehouse Builder
	Executing the Intra-ETL Without Using Oracle Warehouse Builder
	Executing the Intra-ETL by Using the PKG_INTRA_ETL_PROCESS.RUN Procedure

	Refreshing the Data in Oracle Retail Data Model Warehouse
	Refreshing Oracle Retail Data Model Relational Tables and Views
	Refreshing Oracle Retail Data Model OLAP Cubes
	Refreshing Oracle Retail Data Model Data Mining Models

	Managing Errors During Oracle Retail Data Model Intra-ETL Execution
	Monitoring the Execution of the Intra-ETL Process
	Recovering an Intra ETL Process
	Troubleshooting Intra-ETL Performance
	Checking the Execution Plan
	Monitoring PARALLEL DML Executions
	Troubleshooting Data Mining Model Creation

	5 Report and Query Customization
	Reporting Approaches in Oracle Retail Data Model
	Customizing Oracle Retail Data Model Reports
	Writing Your Own Queries and Reports
	Optimizing Star Queries
	Troubleshooting Oracle Retail Data Model Report Performance
	Writing As Is and As Was Queries
	Characteristics of an As Is Query
	Characteristics of an As Was Query
	Examples: As Is and As Was Queries

	Tutorial: Creating a New Oracle Retail Data Model Dashboard
	Tutorial: Creating a New Oracle Retail Data Model Report

	6 Metadata Collection and Reports
	Metadata Collection and Population
	Load LDM/PDM Metadata (Table MD_ENTY)
	GIVE_ABBRV
	MD_DM_ALL_ENT_ATTR
	PL/SQL Program to Update Column Name
	PL/SQL program to insert initial data into MD_OIDM_ATTR_COL_NAM
	PL/SQL program to load data into MD_ENTY

	Load Program (Intra-ETL) Metadata (Table MD_PRG)
	Load Reports and KPI Metadata (Table MD_KPI and MD_REF_ENTY_KPI):

	Metadata Reports and Dashboard

	7 Multi-Currency Support and Configuration
	Multi-Currency Overview
	Multi-Currency Data Field Naming Conventions
	Multi-Currency Data Movement
	Movement from Interface to Base Tables
	Handling Currency at the Base Level

	Movement from Base to Derived Tables
	Movement from Derived to Aggregate Tables
	Handling Data Movement from Base to Derived and Aggregate Layers

	Currency Data Flow
	Currency DWC_CRNCY_CONF Table

	A Sizing and Configuring an Oracle Retail Data Model Warehouse
	Sizing an Oracle Retail Data Model Warehouse
	Configuring a Balanced System for Oracle Retail Data Model
	Maintaining High Throughput in an Oracle Retail Data Model Warehouse
	Configuring I/O in an Oracle Retail Data Model for Bandwidth not Capacity
	Planning for Growth of Your Oracle Retail Data Model
	Testing the I/O System Before Building the Oracle Retail Data Model Warehouse
	Balanced Hardware Configuration Guidelines for Oracle Retail Data Model

	Index
	A
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T

