This chapter contains:
See Also:
Oracle Database Advanced Application Developer's Guide for more information about creating and deploying applications that are optimized for Oracle DatabaseThis section contains:
A scalable application can process a larger workload with a proportional increase in system resource usage. For example, if you double its workload, a scalable application uses twice as many system resources.
An unscalable application exhausts a system resource; therefore, if you increase the application workload, no more throughput is possible. Unscalable applications result in fixed throughputs and poor response times.
Examples of resource exhaustion are:
Hardware exhaustion
Table scans in high-volume transactions causing inevitable disk input/output (I/O) shortages
Excessive network requests causing network and scheduling bottlenecks
Memory allocation causing paging and swapping
Excessive process and thread allocation causing operating system thrashing
Design your applications to use the same resources, regardless of user populations and data volumes, and not to overload system resources.
Bind arguments, used correctly, let you develop efficient, scalable applications.
Just as a subprogram can have parameters, whose values are supplied by the invoker, a SQL statement can have bind argument placeholders, whose values (called bind arguments) are supplied at runtime. Just as a subprogram is compiled once and then run many times with different parameters, a SQL statement with bind argument placeholders is hard parsed once and then soft parsed with different bind arguments.
A hard parse, which includes optimization and row source generation, is a very CPU-intensive operation. A soft parse, which skips optimization and row source generation and proceeds straight to execution, is usually much faster than a hard parse of the same statement. (For an overview of SQL processing, which includes the difference between a hard and soft parse, see Oracle Database Concepts.)
Not only is a hard parse a CPU-intensive operation, it is an unscalable operation, because it cannot be done concurrently with many other operations. For more information about concurrency and scalability, see "About Concurrency and Scalability".
Example 8-1 shows the performance difference between a query without a bind variable and a semantically equivalent query with a bind variable. The former is slower and uses many more latches (for information about how latches affect scalability, see "About Latches and Concurrency"). To collect and display performance statistics, the example uses the Runstats tool, described in "Comparing Programming Techniques with Runstats".
Note:
Example 8-1 shows the performance cost for a single user. As more users are added, the cost escalates rapidly.
The result of Example 8-1 was produced with this setting:
SET SERVEROUTPUT ON FORMAT TRUNCATED
Example 8-1 Bind Variable Improves Performance
CREATE TABLE t ( x VARCHAR2(5) ); DECLARE TYPE rc IS REF CURSOR; l_cursor rc; BEGIN runstats_pkg.rs_start; -- Collect statistics for query without bind variable FOR i IN 1 .. 5000 LOOP OPEN l_cursor FOR 'SELECT x FROM t WHERE x = ' || TO_CHAR(i); CLOSE l_cursor; END LOOP; runstats_pkg.rs_middle; -- Collect statistics for query with bind variable FOR i IN 1 .. 5000 LOOP OPEN l_cursor FOR 'SELECT x FROM t WHERE x = :x' USING i; CLOSE l_cursor; END LOOP; runstats_pkg.rs_stop(500); -- Stop collecting statistics end; /
Result is similar to:
Run 1 ran in 740 hsec Run 2 ran in 30 hsec Run 1 ran in 2466.67% of the time of run 2 Name Run 1 Run 2 Difference STAT...recursive cpu usage 729 19 -710 STAT...CPU used by this sessio 742 30 -712 STAT...parse time elapsed 1,051 4 -1,047 STAT...parse time cpu 1,066 2 -1,064 STAT...session cursor cache hi 1 4,998 4,997 STAT...table scans (short tabl 5,000 1 -4,999 STAT...parse count (total) 10,003 5,004 -4,999 LATCH.session idle bit 5,003 3 -5,000 LATCH.session allocation 5,003 3 -5,000 STAT...execute count 10,003 5,003 -5,000 STAT...opened cursors cumulati 10,003 5,003 -5,000 STAT...parse count (hard) 10,001 5 -9,996 STAT...CCursor + sql area evic 10,000 1 -9,999 STAT...enqueue releases 10,008 7 -10,001 STAT...enqueue requests 10,009 7 -10,002 STAT...calls to get snapshot s 20,005 5,006 -14,999 STAT...calls to kcmgcs 20,028 35 -19,993 STAT...consistent gets pin (fa 20,013 17 -19,996 LATCH.call allocation 20,002 6 -19,996 STAT...consistent gets from ca 20,014 18 -19,996 STAT...consistent gets 20,014 18 -19,996 STAT...consistent gets pin 20,013 17 -19,996 LATCH.simulator hash latch 20,014 11 -20,003 STAT...session logical reads 20,080 75 -20,005 LATCH.shared pool simulator 20,046 5 -20,041 LATCH.enqueue hash chains 20,343 15 -20,328 STAT...recursive calls 40,015 15,018 -24,997 LATCH.cache buffers chains 40,480 294 -40,186 STAT...session pga memory max 131,072 65,536 -65,536 STAT...session pga memory 131,072 65,536 -65,536 LATCH.row cache objects 165,209 139 -165,070 STAT...session uga memory max 219,000 0 -219,000 LATCH.shared pool 265,108 152 -264,956 STAT...logical read bytes from 164,495,360 614,400 -163,880,960 Run 1 latches total compared to run 2 -- difference and percentage Run 1 Run 2 Diff Pct 562,092 864 -561,228 2,466.67% PL/SQL procedure successfully completed.
Note:
Using bind arguments instead of string literals is the most effective way to make your code invulnerable to SQL injection attacks. For details, see Oracle Database PL/SQL Language Reference.
Bind arguments sometimes reduce the efficiency of data warehousing systems. Because most queries take so long, the optimizer tries to produce the best plan for each query rather than the best generic query. Using bind arguments sometimes forces the optimizer to produce the best generic query. For information about improving performance in data warehousing systems, see Oracle Database Data Warehousing Guide.
Although soft parsing is more efficient than hard parsing, the cost of soft parsing a statement many times is still very high. To maximize the efficiency and scalability of your application, minimize parsing. The easiest way to minimize parsing is to use PL/SQL.
PL/SQL, which is optimized for database access, silently caches statements. In PL/SQL, when you close a cursor, the cursor closes from your perspective—that is, you cannot use it where an open cursor is required—but PL/SQL actually keeps the cursor open and caches its statement. If you use the cached statement again, PL/SQL uses the same cursor, thereby avoiding a parse. (PL/SQL closes cached statements if necessary—for example, if your program must open another cursor but doing so would exceed the init.ora setting of OPEN_CURSORS
.)
PL/SQL can silently cache only SQL statements that cannot change at runtime.
The basic syntax of the EXECUTE
IMMEDIATE
statement is:
EXECUTE IMMEDIATE sql_statement
sql_statement
is a string that represents a SQL statement. If sql_statement
has the same value every time the EXECUTE
IMMEDIATE
statement runs, then PL/SQL can cache the EXECUTE
IMMEDIATE
statement. If sql_statement
can be different every time the EXECUTE
IMMEDIATE
statement runs, then PL/SQL cannot cache the EXECUTE
IMMEDIATE
statement.
See Also:
Oracle Database PL/SQL Language Reference for information about EXECUTE
IMMEDIATE
The basic syntax of the OPEN
FOR
statement is:
OPEN cursor_variable FOR query
Your application can open cursor_variable
for several different queries before closing it. Because PL/SQL cannot determine the number of different queries until runtime, PL/SQL cannot cache the OPEN
FOR
statement.
If you do not need to use a cursor variable, then use a declared cursor, for both better performance and ease of programming. For details, see Oracle Database Advanced Application Developer's Guide.
See Also:
Oracle Database PL/SQL Language Reference for information about OPEN
FOR
The DBMS_SQL
package is an API for building, running, and describing dynamic SQL statements. Using the DBMS_SQL
package takes more effort than using the EXECUTE
IMMEDIATE
statement, but you must use the DBMS_SQL
package if the PL/SQL compiler cannot determine at compile time the number or types of output host variables (select list items) or input bind variables.
See Also:
Oracle Database PL/SQL Language Reference for more information about when to use the DBMS_SQL
package
Oracle Database PL/SQL Packages and Types Reference for complete information about the DBMS_SQL
package
Bulk SQL reduces the number of "round trips" between PL/SQL and SQL, thereby using fewer resources. Without bulk SQL, you retrieve one row at a time from the database (SQL), process it (PL/SQL), and return it to the database (SQL). With bulk SQL, you retrieve a set of rows from the database, process the set of rows, and then return the whole set to the database.
Oracle recommends using Bulk SQL when you retrieve multiple rows from the database and return them to the database, as in Example 8-2. You do not need bulk SQL if you retrieve multiple rows but do not return them; for example:
FOR x IN (SELECT * FROM t WHERE ... ) -- Retrieve row set (implicit array fetch) LOOP DBMS_OUTPUT.PUT_LINE(t.x); -- Process rows but do not return them END LOOP;
Example 8-2 loops through a table t
with a column object_name
, retrieving sets of 100 rows, processing them, and returning them to the database. (Limiting the bulk FETCH
statement to 100 rows requires an explicit cursor.)
CREATE OR REPLACE PROCEDURE bulk AS TYPE ridArray IS TABLE OF ROWID; TYPE onameArray IS TABLE OF t.object_name%TYPE; CURSOR c is SELECT ROWID rid, object_name -- explicit cursor FROM t t_bulk; l_rids ridArray; l_onames onameArray; N NUMBER := 100; BEGIN OPEN c; LOOP FETCH c BULK COLLECT INTO l_rids, l_onames LIMIT N; -- retrieve N rows from t FOR i in 1 .. l_rids.COUNT LOOP -- process N rows l_onames(i) := substr(l_onames(i),2) || substr(l_onames(i),1,1); END LOOP; FORALL i in 1 .. l_rids.count -- return processed rows to t UPDATE t SET object_name = l_onames(i) WHERE ROWID = l_rids(i); EXIT WHEN c%NOTFOUND; END LOOP; CLOSE c; END; /
Example 8-3 does the same job as Example 8-2, without bulk SQL.
CREATE OR REPLACE PROCEDURE slow_by_slow AS BEGIN FOR x IN (SELECT rowid rid, object_name FROM t t_slow_by_slow) LOOP x.object_name := substr(x.object_name,2) || substr(x.object_name,1,1); UPDATE t SET object_name = x.object_name WHERE rowid = x.rid; END LOOP; END;
As these TKPROF
reports for Example 8-2 and Example 8-3 show, using bulk SQL for this job uses almost 50% less CPU time:
SELECT ROWID RID, OBJECT_NAME FROM T T_BULK call count cpu elapsed disk query current rows ------- ------ -------- ---------- ---------- ---------- ---------- ---------- total 721 0.17 0.17 0 22582 0 71825 ******************************************************************************** UPDATE T SET OBJECT_NAME = :B1 WHERE ROWID = :B2 call count cpu elapsed disk query current rows ------- ------ -------- ---------- ---------- ---------- ---------- ---------- Parse 1 0.00 0.00 0 0 0 0 Execute 719 12.83 13.77 0 71853 74185 71825 Fetch 0 0.00 0.00 0 0 0 0 ------- ------ -------- ---------- ---------- ---------- ---------- ---------- total 720 12.83 13.77 0 71853 74185 71825 SELECT ROWID RID, OBJECT_NAME FROM T T_SLOW_BY_SLOW call count cpu elapsed disk query current rows ------- ------ -------- ---------- ---------- ---------- ---------- ---------- total 721 0.17 0.17 0 22582 0 71825 ******************************************************************************** UPDATE T SET OBJECT_NAME = :B2 WHERE ROWID = :B1 call count cpu elapsed disk query current rows ------- ------ -------- ---------- ---------- ---------- ---------- ---------- Parse 1 0.00 0.00 0 0 0 0 Execute 71824 21.25 22.25 0 71836 73950 71824 Fetch 0 0.00 0.00 0 0 0 0 ------- ------ -------- ---------- ---------- ---------- ---------- ---------- total 71825 21.25 22.25 0 71836 73950 71824
However, using bulk SQL for this job uses more CPU time—and more code—than using a single SQL statement, as this TKPROF
report shows:
UPDATE T SET OBJECT_NAME = SUBSTR(OBJECT_NAME,2) || SUBSTR(OBJECT_NAME,1,1) call count cpu elapsed disk query current rows ------- ------ -------- ---------- ---------- ---------- ---------- ---------- Parse 1 0.00 0.00 0 0 0 0 Execute 1 1.30 1.44 0 2166 75736 71825 Fetch 0 0.00 0.00 0 0 0 0 ------- ------ -------- ---------- ---------- ---------- ---------- ---------- total 2 1.30 1.44 0 2166 75736 71825
See Also:
Oracle Database Advanced Application Developer's Guide for an overview of bulk SQL
Oracle Database Advanced Application Developer's Guide for more specific information about when to use bulk SQL
Oracle Database PL/SQL Language Reference for more information about bulk SQL
The better your application handles concurrency, the more scalable it is.
Concurrency is the simultaneous execution of multiple transactions. Statements within concurrent transactions can update the same data. Concurrent transactions must produce meaningful and consistent results. Therefore, a multiuser database must provide the following:
Data concurrency , which ensures that users can access data at the same time.
Data consistency, which ensures that each user sees a consistent view of the data, including visible changes from his or her own transactions and committed transactions of other users
Oracle Database maintains data consistency by using a multiversion consistency model and various types of locks and transaction isolation levels. For an overview of the Oracle Database locking mechanism, see Oracle Database Concepts. For an overview of Oracle Database transaction isolation levels, see Oracle Database Concepts.
To describe consistent transaction behavior when transactions run concurrently, database researchers have defined a transaction isolation category called serializable. A serializable transaction operates in an environment that appears to be a single-user database. Serializable transactions are desirable in specific cases, but for 99% of the work load, read committed isolation is perfect.
Oracle Database has features that improve concurrency and scalability—for example, sequences, latches, nonblocking reads and writes, and shared SQL.
This section contains:
See Also:
Oracle Database Concepts for more information about data concurrency and consistencyA sequence is a schema object from which multiple users can generate unique integers, which is very useful when you need unique primary keys.
Without sequences, unique primary key values must be produced programmatically. A user gets a new primary key value by selecting the most recently produced value and incrementing it. This technique requires a lock during the transaction and causes multiple users to wait for the next primary key value—that is, the transactions serialize. Sequences eliminate serialization, thereby improving the concurrency and scalability of your application.
See Also:
Oracle Database Concepts for information about concurrent access to sequences
A latch is a simple, low-level serialization mechanism that coordinates multiuser access to shared data structures. Latches protect shared memory resources from corruption when accessed by multiple processes.
An increase in latches means more concurrency-based waits, and therefore a decrease in scalability. If you can use either an approach that runs slightly faster during development or one that uses fewer latches, use the latter.
See Also:
Oracle Database Concepts for information about latches
Oracle Database Concepts for information about mutexes, which are like latches for single objects
In Oracle Database, nonblocking reads and writes let queries execute concurrently with changes to the data they are reading, without blocking or stopping. Nonblocking reads and writes let one session read data while another session is changing that data.
Oracle Database compiles a SQL statement into an executable object once, and then other sessions can reuse the object for as long as it exists. This Oracle Database feature, called shared SQL, lets the database do very resource-intensive operations—compiling and optimizing SQL statements—only once, instead of every time a session uses the same SQL statement.
See Also:
Oracle Database Concepts for more information about shared SQLThe more concurrent sessions you have, the more concurrency-based waits you have, and the slower your response time is.
If your computer has n CPU cores, then at most n sessions can really be concurrently active. Each additional "concurrent" session must wait for a CPU core to be available before it can become active. If some waiting sessions are waiting only for I/O, then increasing the number of concurrent sessions to slightly more than n might slightly improve runtime performance. However, increasing the number of concurrent sessions too much will significantly reduce runtime performance.
The SESSIONS
initialization parameter determines the maximum number of concurrent users in the system. For details, see Oracle Database Reference.
See Also:
http://www.youtube.com/watch?v=xNDnVOCdvQ0
for a video that shows the effect of reducing the number of concurrent sessions on a computer with 12 CPU cores from thousands to 96The Runstats tool lets you compare the performance of two programming techniques to see which is better.
Runstats measures:
Elapsed time for each technique in hundredths of seconds (hsec)
Elapsed time for the first technique as a percentage of that of the second technique
System statistics for the two techniques (for example, parse calls)
Latching for the two techniques
Of the preceding measurements, the most important is latching (see "About Latches and Concurrency").
See Also:
Example 8-1, which uses RunstatsThis section shows how set up the Runstats tool, which is implemented as a package that uses a view and a temporary table.
Note:
For step 1 of the following procedure, you need theSELECT
privilege on the dynamic performance views V$STATNAME
, V$MYSTAT
, and V$LATCH
. If you cannot get this privilege, then have someone who has the privilege create the view in step 1 and grant you the SELECT
privilege on it.Create the view that Runstats uses:
CREATE OR REPLACE VIEW stats AS SELECT 'STAT...' || a.name name, b.value FROM V$STATNAME a, V$MYSTAT b WHERE a.statistic# = b.statistic# UNION ALL SELECT 'LATCH.' || name, gets FROM V$LATCH;
Create the temporary table that Runstats uses:
DROP TABLE run_stats; CREATE GLOBAL TEMPORARY TABLE run_stats ( runid VARCHAR2(15), name VARCHAR2(80), value INT ) ON COMMIT PRESERVE ROWS;
Create this package specification:
CREATE OR REPLACE PACKAGE runstats_pkg AS PROCEDURE rs_start; PROCEDURE rs_middle; PROCEDURE rs_stop( p_difference_threshold IN NUMBER DEFAULT 0 ); end; /
The parameter p_difference_threshold
controls the amount of statistics and latching data that Runstats displays. Runstats displays data only when the difference for the two techniques is greater than p_difference_threshold
. By default, Runstats displays all data.
Create this package body:
CREATE OR REPLACE PACKAGE BODY runstats_pkg AS g_start NUMBER; g_run1 NUMBER; g_run2 NUMBER; PROCEDURE rs_start IS BEGIN DELETE FROM run_stats; INSERT INTO run_stats SELECT 'before', stats.* FROM stats; g_start := DBMS_UTILITY.GET_TIME; END rs_start; PROCEDURE rs_middle IS BEGIN g_run1 := (DBMS_UTILITY.GET_TIME - g_start); INSERT INTO run_stats SELECT 'after 1', stats.* FROM stats; g_start := DBMS_UTILITY.GET_TIME; END rs_middle; PROCEDURE rs_stop( p_difference_threshold IN NUMBER DEFAULT 0 ) IS BEGIN g_run2 := (DBMS_UTILITY.GET_TIME - g_start); DBMS_OUTPUT.PUT_LINE ('Run 1 ran in ' || g_run1 || ' hsec'); DBMS_OUTPUT.PUT_LINE ('Run 2 ran in ' || g_run2 || ' hsec'); DBMS_OUTPUT.PUT_LINE ('Run 1 ran in ' || round(g_run1/g_run2*100, 2) || '% of the time of run 2'); DBMS_OUTPUT.PUT_LINE( CHR(9) ); INSERT INTO run_stats SELECT 'after 2', stats.* FROM stats; DBMS_OUTPUT.PUT_LINE ( RPAD( 'Name', 30 ) || LPAD( 'Run 1', 14) || LPAD( 'Run 2', 14) || LPAD( 'Difference', 14) ); FOR x IN ( SELECT RPAD( a.name, 30 ) || TO_CHAR( b.value - a.value, '9,999,999,999' ) || TO_CHAR( c.value - b.value, '9,999,999,999' ) || TO_CHAR( ( (c.value - b.value) - (b.value - a.value)), '9,999,999,999' ) data FROM run_stats a, run_stats b, run_stats c WHERE a.name = b.name AND b.name = c.name AND a.runid = 'before' AND b.runid = 'after 1' AND c.runid = 'after 2' AND (c.value - a.value) > 0 AND abs((c.value - b.value) - (b.value - a.value)) > p_difference_threshold ORDER BY ABS((c.value - b.value) - (b.value - a.value)) ) LOOP DBMS_OUTPUT.PUT_LINE( x.data ); END LOOP; DBMS_OUTPUT.PUT_LINE( CHR(9) ); DBMS_OUTPUT.PUT_LINE( 'Run 1 latches total compared to run 2 -- difference and percentage' ); DBMS_OUTPUT.PUT_LINE ( LPAD( 'Run 1', 14) || LPAD( 'Run 2', 14) || LPAD( 'Diff', 14) || LPAD( 'Pct', 10) ); FOR x IN ( SELECT TO_CHAR( run1, '9,999,999,999' ) || TO_CHAR( run2, '9,999,999,999' ) || TO_CHAR( diff, '9,999,999,999' ) || TO_CHAR( ROUND( g_run1/g_run2*100, 2), '99,999.99' ) || '%' data FROM ( SELECT SUM (b.value - a.value) run1, SUM (c.value - b.value) run2, SUM ( (c.value - b.value) - (b.value - a.value)) diff FROM run_stats a, run_stats b, run_stats c WHERE a.name = b.name AND b.name = c.name AND a.runid = 'before' AND b.runid = 'after 1' AND c.runid = 'after 2' AND a.name like 'LATCH%' ) ) LOOP DBMS_OUTPUT.PUT_LINE( x.data ); END LOOP; END rs_stop; END; /
See Also:
Oracle Database Reference for information about dynamic performance views
To use Runstats to compare two programming techniques, invoke the runstats_pkg procedures from an anonymous block, using this syntax:
[ DECLARE local_declarations ] BEGIN runstats_pkg.rs_start; code_for_first_technique runstats_pkg.rs_middle; code_for_second_technique runstats_pkg.rs_stop(n); END; /
See Also:
Example 8-1, which uses RunstatsOracle Database supplies instrumentation packages whose subprograms let your application generate trace information whenever necessary. Using this trace information, you can debug your application without a debugger and identify code that performs badly. Instrumentation provides your application with considerable functionality; therefore, it is not overhead. Overhead is something that you can remove without losing much benefit.
Some instrumentation packages that Oracle Database supplies are:
DBMS_APPLICATION_INFO
, which enables a system administrator to track the performance of your application by module.
For more information about DBMS_APPLICATION_INFO
, see Oracle Database PL/SQL Packages and Types Reference.
DBMS_SESSION
, which enables your application to access session information and set preferences and security levels
For more information about DBMS_SESSION
, see Oracle Database PL/SQL Packages and Types Reference.
UTL_FILE
, which enables your application to read and write operating system text files
For more information about UTL_FILE
, see Oracle Database PL/SQL Packages and Types Reference.
See Also:
Oracle Database PL/SQL Packages and Types Reference for a summary of PL/SQL packages that Oracle Database suppliesDatabase statistics provide information about the type of load on the database and the internal and external resources used by the database. To accurately diagnose performance problems with the database using ADDM, statistics must be available. For information about statistics gathering, see Oracle Database 2 Day + Performance Tuning Guide.
Note:
If Oracle Enterprise Manager is unavailable, then you can gather statistics usingDBMS_MONITOR
subprograms, described in Oracle Database PL/SQL Packages and Types Reference.Oracle Database provides several tracing tools that can help you monitor and analyze Oracle Database applications. For details, see Oracle Database SQL Tuning Guide.
When developing your application, use the existing functionality of your programming language, your operating system, Oracle Database, and the PL/SQL packages and types that Oracle Database supplies as much as possible. An application that uses existing functionality is easier to develop and maintain than one that does not, and it also runs faster.
Examples of existing functionality that many developers reinvent are:
Constraints
For introductory information about constraints, see "Ensuring Data Integrity in Tables."
SQL functions (functions that are "built into" SQL)
For information about SQL functions, see Oracle Database SQL Language Reference.
Sequences (which can generate unique sequential values)
Auditing (the monitoring and recording of selected user database actions)
For introductory information about auditing, see Oracle Database 2 Day + Security Guide.
Replication (the process of copying and maintaining database objects, such as tables, in multiple databases that comprise a distributed database system)
For an overview of replication, see Oracle Database Advanced Replication.
Message queuing (how web-based business applications communicate with each other)
For introductory information about Oracle Database Advanced Queuing (AQ), see Oracle Streams Advanced Queuing User's Guide.
Maintaining a history of record changes
For introductory information about Workspace Manager, see Oracle Database Workspace Manager Developer's Guide.
In Example 8-4, two concurrent transactions dequeue messages stored in a table (that is, each transaction finds and locks the next unprocessed row of the table). Rather than simply invoking the DBMS_AQ.DEQUEUE
procedure (described in Oracle Database PL/SQL Packages and Types Reference), the example creates a function-based index on the table and then uses that function in each transaction to retrieve the rows and display the messages.
Example 8-4 Concurrent Dequeuing Transactions
Create table:
DROP TABLE t; CREATE TABLE t ( id NUMBER PRIMARY KEY, processed_flag VARCHAR2(1), payload VARCHAR2(20) );
Create index on table:
CREATE INDEX t_idx ON t( DECODE( processed_flag, 'N', 'N' ) );
Populate table:
INSERT INTO t SELECT r, CASE WHEN MOD(r,2) = 0 THEN 'N' ELSE 'Y' END, 'payload ' || r FROM (SELECT LEVEL r FROM DUAL CONNECT BY LEVEL <= 5);
Show table:
SELECT * FROM t;
Result:
ID P PAYLOAD ---------- - -------------------- 1 Y payload 1 2 N payload 2 3 Y payload 3 4 N payload 4 5 Y payload 5 5 rows selected.
First transaction:
DECLARE l_rec t%ROWTYPE; CURSOR c IS SELECT * FROM t WHERE DECODE(processed_flag,'N','N') = 'N' FOR UPDATE SKIP LOCKED; BEGIN OPEN c; FETCH c INTO l_rec; IF ( c%FOUND ) THEN DBMS_OUTPUT.PUT_LINE( 'Got row ' || l_rec.id || ', ' || l_rec.payload ); END IF; CLOSE c; END; /
Result:
Got row 2, payload 2
Concurrent transaction:
DECLARE
PRAGMA AUTONOMOUS_TRANSACTION;
l_rec t%ROWTYPE;
CURSOR c IS
SELECT *
FROM t
WHERE DECODE(processed_flag,'N','N') = 'N'
FOR UPDATE
SKIP LOCKED;
BEGIN
OPEN c;
FETCH c INTO l_rec;
IF ( c%FOUND ) THEN
DBMS_OUTPUT.PUT_LINE( 'Got row ' || l_rec.id || ', ' || l_rec.payload );
END IF;
CLOSE c;
COMMIT;
END;
/
Result:
Got row 4, payload 4
The code in Example 8-4 implements a feature similar to a DBMS_AQ.DEQUEUE
invocation but with fewer capabilities. The development time saved by using existing functionality (in this case, function-based indexes) can be large.
See Also:
Oracle Database New Features Guide (with each release)
Oracle Database Concepts (with each release)
If your application uses database tables, then cover each one with an editioning view so that you can use edition-based redefinition (EBR) to upgrade the database component of your application while it is in use, thereby minimizing or eliminating down time. For information about EBR, see Oracle Database Advanced Application Developer's Guide. For information about editioning views, see Oracle Database Advanced Application Developer's Guide.
When granting privileges on the schema objects that comprise your application, use the principle of least privilege. That is, give users only the privileges that they need. For more information about the principle of least privilege, see Oracle Database 2 Day + Security Guide.
See Also:
"Using Bind Arguments to Improve Scalability" for information about using bind arguments instead of string literals, which is the most effective way to make your code invulnerable to SQL injection attacks